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Abstract

Universal bi-Hamiltonian hierarchies of group-invariant (multicomponent) soliton equations are derived from non-stretching
geometric curve flows γ (t, x) in Riemannian symmetric spaces M = G/H , including compact semisimple Lie groups M = K
for G = K × K , H = diag G. The derivation of these soliton hierarchies utilizes a moving parallel frame and connection 1-form
along the curve flows, related to the Klein geometry of the Lie group G ⊃ H where H is the local frame structure group. The
soliton equations arise in explicit form from the induced flow on the frame components of the principal normal vector N = ∇xγx
along each curve, and display invariance under the equivalence subgroup in H that preserves the unit tangent vector T = γx in the
framing at any point x on a curve. Their bi-Hamiltonian integrability structure is shown to be geometrically encoded in the Cartan
structure equations for torsion and curvature of the parallel frame and its connection 1-form in the tangent space Tγ M of the curve
flow. The hierarchies include group-invariant versions of sine–Gordon (SG) and modified Korteweg–de Vries (mKdV) soliton
equations that are found to be universally given by curve flows describing non-stretching wave maps and mKdV analogs of non-
stretching Schrödinger maps on G/H . These results provide a geometric interpretation and explicit bi-Hamiltonian formulation
for many known multicomponent soliton equations. Moreover, all examples of group-invariant (multicomponent) soliton equations
given by the present geometric framework can be constructed in an explicit fashion based on Cartan’s classification of symmetric
spaces.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and overview

The theory of integrable soliton equations displays many deep links to differential geometry, particularly as found
in the study of geometric curve flows. In this paper, group-invariant soliton equations and their bi-Hamiltonian
integrability structure are derived from studying non-stretching flows of curves in symmetric spaces G/H . Such
spaces describe curved G-invariant Riemannian manifolds, generalizing the classical two-dimensional Riemannian
geometries i.e., the sphere S2

' SO(3)/SO(2), the hyperbolic plane H2
' SL(2,R)/SO(2), and the Euclidean

plane R2
' Euc(2)/SO(2), which are characterized by constant (positive, negative, zero) curvature.

Geometric curve flows in constant curvature spaces M = S2, H2,R2 are well known to yield [14,16,22,18] the
mKdV hierarchy of scalar soliton equations and its hereditary recursion operator. The starting point is to formulate
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the flow of a non-stretching (inextensible) curve γ (t, x) as geometrically given by γt = h⊥N + h‖T in an adapted
moving frame (T, N ) = (γx , ∗γx ) (i.e. a Frenet frame) along the curve, where x is arclength and ∗ is the Hodge-star
operator on vectors in the tangent plane R2

' Tx M . Preservation of the non-stretching condition γx · γx = 1 under
the curve flow yields the relation ∂x h‖ = κh⊥, allowing the tangential component h‖ of the flow to be expressed in
terms of the normal component h⊥ and the curvature invariant κ = N ·∇x T of the curve. The flow equation combined
with the Serret–Frenet structure equations of the moving frame then determine an evolution of this curvature invariant
κt = R(h⊥) + χh⊥ where R = D2

x + κ2
+ κx D−1

x κ is seen to be the hereditary recursion operator of the mKdV
hierarchy of soliton equations [29], and χ is the Gaussian curvature (+1,−1, 0) of M . In particular, the flow given by
h⊥ = κx , h‖ =

1
2κ

2 yields the mKdV evolution equation on κ to within a convective term, κt − χκx = κ3x +
3
2κ

2κx
(called the +1 flow in the hierarchy). Higher order mKdV evolution equations arise from linear combinations of flows
h⊥ = Rn(κx ), h‖ = D−1

x (κRn(κx )), n = 1, 2, . . .. The entire mKdV hierarchy κt − χκx = Rn(κx ) thus sits in the
class of geometric flows in which the evolution of the curve in the normal direction is a function h⊥ = h⊥(κ, κx , . . .)

of the differential invariants of the curve [25,26]. Such flows correspond to geometric equations γt = f (γx ,∇xγx , . . .)

satisfied by the curve γ (t, x).

It is less widely known that the geometric curve equations produced in this manner from the mKdV hierarchy of
evolutions on κ are close analogs of Schrödinger maps γt = J (γx ), J = i∇x , on S2

' CP1 (identifying i with ∗

after complexification of the tangent plane). For instance the mKdV evolution itself yields γt = κx N +
1
2κ

2T =

∇x (κ ∗γx ) +
3
2κ

2γx describing [1] a geometric curve equation γt = Kγ (γx ), Kγ = ∇
2
x +

3
2 |∇xγx |

2 as obtained
through the Serret–Frenet equations ∇x T = κN , ∇x N = −κT . This flow operator Kγ is the mKdV analog of a
modified Schrödinger operator Jγ = i∇x + (arg γx )x that preserves |γx | = 1. One geometrical difference between
these operators is that γ̄x · Jγ (γx ) = 0 whereas γ̄x · Kγ (γx ) =

1
2κ

2 > 0, implying (by dimensional considerations)
that the non-stretching Schrödinger flow of the curve γ (t, x) in S2 is actually stationary γt = Jγ (γx ) = 0 (so thus
κt = 0), while in contrast the non-stretching mKdV flow γt = Kγ (γx ) is dynamical.

A related geometric evolution [1] comes from the kernel of the mKdV recursion operator R(h⊥) = 0 giving
the evolution equation κt = χh⊥ (called the −1 flow in the mKdV hierarchy), with h⊥ satisfying ∂x h⊥ = −κh‖,
∂x h‖ = κh⊥. This flow obeys the conservation law 0 = ∂x (h‖

2
+ h⊥

2) = ∇x (γt · γt ) which implies it is conformally

equivalent (under rescalings of t) to a flow with uniform speed |γt | =

√
h‖

2
+ h⊥

2
= 1. The evolution of the curve is

then given by h⊥ = sin(θ), h‖ = cos(θ) in terms of the nonlocal invariant θ = −
∫
κdx of γ , yielding the sine–Gordon

equation θt x = −χ sin(θ) induced from the evolution on κ [21,28]. Equivalently, the relations θ = arcsin(κt/χ) and

θx = −κ yield a hyperbolic equation κt x = −κ

√
χ2 − κ2

t on κ . The corresponding geometric curve equation satisfied
by γ (t, x) is ∇xγt = ∇x (sin(θ)N ) + ∇x (cos(θ)T ) = 0 after the Serret–Frenet equations are used. This curve flow
is recognized [1] to be a uniform speed, non-stretching wave map ∇xγt = ∇tγx = 0 on S2, with t, x viewed as light
cone coordinates for the wave operator.

Moreover, the geometry of the two-dimensional surfaces swept out by all these non-stretching curve flows γ (t, x)
in M = S2, H2,R2 turns out to encode the bi-Hamiltonian integrability structure [30] of the mKdV soliton hierarchy.
The relevant geometry [1] is given by the Riemannian connections ∇t ,∇x in the flow direction γt and tangent
direction γx , specifically that they have vanishing torsion ∇tγx − ∇xγt = [γt , γx ] = 0 and carry constant curvature
[∇t ,∇x ] = R(γt , γx ) = χ(γt · ∗γx )∗ where R(X, Y ) is the Riemann curvature tensor of M with X, Y in the tangent
plane. A projection of these equations into the normal space of γ yields κt = H($)+ χh⊥, $ = J (h⊥), expressed
in terms of the flow invariant $ = N · ∇t T , where H = Dx , J = Dx + κD−1

x κ are found to be respectively the
mKdV Hamiltonian cosymplectic and symplectic operators for the hierarchy of mKdV evolutions on κ . In this setting
h⊥∂/∂κ represents a Hamiltonian vector field, and $dκ represents a variational covector field with $ = δH/δκ
holding for some Hamiltonian H = H(κ, κx , . . .). Compatibility of the operators H,J implies that R = H ◦ J and
its adjointR∗

= J ◦H generate a hierarchy of commuting vector fields h⊥
(n)

= Rn(κx ) and corresponding involutive
covector fields $ (n)

= R∗n(κ), n = 0, 1, 2, . . ., related by h⊥
(n)

= H($ (n)), $ (n+1)
= J (h⊥

(n)). For n ≥ 1 this
hierarchy possesses a bi-Hamiltonian structure h⊥

(n)
= H(δH (n)/δκ) = J −1(δH (n+1)/δκ) where J −1 is the formal

inverse of J defined on the x-jet space of κ , and with the local Hamiltonians H (n)
= H (n)(κ, κx , . . .) determined

by $ (n)
= δH (n)/δκ . Thus H,J −1 are formally a bi-Hamiltonian pair of cosymplectic operators. Alternatively,

E = HJH = D3
x + κ2 Dx + κx D−1

x (κDx ) provides an explicit cosymplectic operator compatible with H, giving the
bi-Hamiltonian structure h⊥

(n)
= E(δH (n−1)/δκ) = H(δH (n)/δκ).
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The bottom of the mKdV hierarchy h⊥
(0)

= κx , $ (0)
= κ , H (0)

=
1
2κ

2 originates geometrically from the
x-translation vector field κx∂/∂κ which is a symmetry of the operators H,J . In terms of the jet space variables
(x, κ, κx , . . .), the entire hierarchy has the form of homogeneous polynomials with non-zero scaling weight under the
mKdV scaling symmetry x → λx , κ → λ−1κ . As a consequence, through a scaling formula (cf. [2]) the Hamiltonians
are given by H (n)

≡
1

1+2n (κ + xκx )$
(n)

≡
1

1+2n D−1
x (κh⊥

(n)) =
1

1+2n h‖
(n) (modulo total x-derivatives) for n ≥ 0,

where ∂x h‖
(n)

= κh⊥
(n). Thus

∫
h‖
(n)dx represents a (scaled) Hamiltonian functional on the x-jet space of κ . The

same expression carries over to the −1 flow in the mKdV hierarchy, h⊥
(−1)

= sin(θ), h‖
(−1)

= cos(θ), given
in terms of κ = −θx . Specifically, h⊥

(−1)
= H(δH (−1)/δκ) holds for the Hamiltonian H (−1)

= −h‖
(−1), with

$ (−1)
= δH (−1)/δκ = D−1

x (δH (−1)/δθ).

Recent work [3] has generalized these results to the two known vector versions of the mKdV equation [34,6], by
deriving their bi-Hamiltonian integrability structure along with their associated hierarchies of (higher order) vector
soliton equations from geometric curve flows in the Riemannian symmetric spaces SO(N + 1)/SO(N ) ' Sn and
SU (N )/SO(N ). These two spaces exhaust (cf. [19]) all examples of irreducible symmetric spaces G/SO(N ) given
by compact simple Lie groups G, and in the case N = 2 they both coincide with the classical Riemannian spherical
geometry S2

' SO(3)/SO(2) ' SU (2)/SO(2).

This geometric derivation of the vector mKdV hierarchies involves several main ideas. Firstly, for a non-stretching
curve γ , the components of the principal normal in an adapted moving frame along γ play the role of a natural
Hamiltonian flow variable. Secondly, the torsion and curvature equations of the Riemannian connections ∇t ,∇x on
the two-dimensional surface of any flow γ (t, x) of such curves in G/SO(N ) geometrically encode Hamiltonian
cosymplectic and symplectic operators H,J , where x is the arclength on γ . In particular, the Hamiltonian structure
looks simplest if the moving frame along γ is chosen so that it has a parallel connection matrix [9] given by an
algebraic version of the basic geometric property ∇x N ‖ T , ∇x T ⊥ T of an adapted moving frame generalized
from S2 to G/SO(N ). For such a moving parallel frame the torsion and curvature equations reduce to a simple form
which can be derived directly from the infinitesimal Klein geometry of the tangent spaces g/so(N ) in G/SO(N ),
where g is the Lie algebra of G. Thirdly, within the class of non-stretching curves whose parallel moving frame
is preserved by an O(N − 1) isotropy subgroup of the local frame structure group SO(N ) of the frame bundle of
G/SO(N ), the encoded operators H, E = HJH comprise an O(N − 1)-invariant bi-Hamiltonian pair. Moreover,
they possess the mKdV scaling symmetry and exhibit symmetry invariance under x-translations. As a result, these
operators yield a hereditary recursion operator R = HJ generating a hierarchy of integrable curve flows in
G/SO(N ), organized by their scaling weight, in which the flow variable satisfies an O(N − 1)-invariant vector
evolution equation. The +1 flow in the respective hierarchies for G = SO(N + 1), SU (N ) is given by the two
known vector mKdV soliton equations [34], and there is a −1 flow described by vector hyperbolic equations [6]
(variants of vector SG equations) coming from the kernel of the respective mKdV recursion operators in the two
hierarchies. All the flows in both hierarchies correspond to commuting bi-Hamiltonian vector fields in the x-jet
space of the flow variable. Finally, the evolution equations of the curve γ (t, x) produced by the ±1 flows in
each hierarchy are G-invariant generalizations of the geometric map equations found for these flows in the case
S2

' SO(3)/SO(2) ' SU (2)/SO(2), identified as wave maps and mKdV analogs of Schrödinger maps, on
G/SO(N ).

More recently there has been an extension of these results [4] deriving complex generalizations of the vector
mKdV hierarchies along with their bi-Hamiltonian integrability structure from geometric curve flows in the Lie groups
G = SO(N + 1), SU (N ). The derivation adapts the moving parallel frame formulation of non-stretching curve flows
to these Lie groups by viewing them as Riemannian symmetric spaces in the standard manner [20,19], with the frame
invariance group being a natural isotropy subgroup U (N − 1) ⊂ G contained in the local structure group of the frame
bundle of G = SO(N + 1), SU (N ). This leads to bi-Hamiltonian hierarchies of curve flows γ (t, x) in which the
flow variable (again described by the components of the principal normal vector along the curves) obeys a U (N − 1)-
invariant vector evolution equation. In particular, the hierarchies contain the known complex generalizations [34] of
the two versions of vector mKdV soliton equations, as well as complex generalizations of the corresponding vector
SG equations which were first obtained by symmetry–integrability classifications [6].

A full generalization of these ideas and results will be presented here to obtain bi-Hamiltonian hierarchies of
group-invariant soliton equations arising from geometric curve flows in general Riemannian symmetric spaces G/H .
All irreducible examples of these spaces divide into two types, where either G is a simple Lie group (and H is a
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compact subgroup invariant under an involutive automorphism of G) or G is a Lie group product K × K (and H is a
diagonal subgroup) such that G/H ' K is a compact simple Lie group.

Theorem 1.1. For each Riemannian symmetric space G/H there is a family of bi-Hamiltonian hierarchies of non-
stretching curve flows described by G-invariant geometric maps on G/H. The components of the principal normal
vector along these curves in a moving parallel frame satisfy group-invariant (multicomponent) soliton equations of
mKdV and SG type, with an explicit bi-Hamiltonian structure. In each hierarchy the geometric maps corresponding to
the SG flow and the lowest order mKdV flow are universally given by a non-stretching wave map and a mKdV analog
of a non-stretching Schrödinger map.

Remark 1.2. The invariance group of the soliton equations and their bi-Hamiltonian integrability structure consists
of the linear isotropy subgroup in Ad(H) that preserves the tangent vector for the corresponding curves in the tangent
space ToG/H = g/h at the origin o. (By G-invariance, any geometric curve flow is equivalent to one that passes
through the origin o in G/H .)

Remark 1.3. Up to isomorphism, the distinct bi-Hamiltonian hierarchies in the family admitted by a given
Riemannian symmetric space G/H are in one-to-one correspondence with equivalence classes of unit-norm elements
contained in any fixed maximally abelian subspace in g/h modulo the Weyl group W ⊂ Ad(H).

These results provide a geometric origin and unifying interpretation that encompasses many examples of
multicomponent soliton equations. All examples can, moreover, be written down in explicit form, using Cartan’s
classification of symmetric spaces [19].

To begin, some preliminaries are stated in Section 2 on the relevant differential geometric and Lie algebraic
properties of symmetric spaces [19,20], particularly the infinitesimal Klein geometry [33] attached to g/h, and the
Cartan subspaces in g/h determined by the Lie algebras h, g of H,G. These properties are used in an essential way
in Section 3 for the study of non-stretching curve flows γ (t, x) in G/H , where x is arclength (so |γx | = 1 is the
non-stretching property using the Riemannian metric on G/H ). The main starting point is given by the pullback of
the torsion and curvature equations of the Riemannian connection on G/H to the two-dimensional surface of the
flow of γ , as derived directly by a frame formulation in terms of the infinitesimal Klein geometry of g/h. Based on
the decomposition of g relative to ad(e) where e is a unit vector belonging to a Cartan subspace in g/h, a natural
algebraic construction is given for a parallel moving frame along γ , evolving under the flow. Then in Section 4, the
moving frame components of the torsion and curvature are shown to encode a bi-Hamiltonian pair of cosymplectic and
symplectic operatorsH,J with respect to a Hamiltonian flow variable given by the moving frame components of the
principal normal along γ . The proof of this main result will involve extending the standard theory of bi-Hamiltonian
structures [29,15] to the setting of Lie-algebra-valued variables.

The hierarchy of bi-Hamiltonian commuting flows produced by the operators H,J is studied in Section 5, where
the +1 and −1 flows are constructed and found to yield group-invariant multicomponent versions of mKdV and SG
equations associated to all irreducible Riemannian symmetric spaces. The geometric map equations produced by these
universal ±1 flows are derived in detail. Concluding remarks on extensions of these results will be made in Section 6.

Some related results of interest have been obtained in recent literature. In one direction, Hamiltonian operators
for one of the vector mKdV equations as well as for a related scalar–vector KdV system have been derived from
non-stretching curve flows in N -dimensional constant curvature Riemannian geometries (i.e. the N -sphere) and in
N -dimensional flat conformal geometries (i.e. the Möbius N -sphere), using two different approaches. One approach
[30,31] viewed these geometries as locally modeled by Klein geometries on RN defined respectively by a Euclidean
isometry group action Euc(N ) and a Möbius (conformal) isometry group action Mob(N ) ' SO(N + 1, 1). A
subsequent derivation [1,5] used just the intrinsic Riemannian and conformal connections defined on the underlying
manifold SN . Both derivations utilize the approach of studying curve flows via parallel moving frames, first introduced
in [22,27,30]. The same approach has also been applied recently [36] to curve flows in symplectic geometry
Sp(N + 1)/Sp(N )× Sp(1), giving a geometric derivation of a quaternionic (non-commutative) mKdV equation.

Earlier fundamental work appeared in [7,8] on multicomponent mKdV equations derived from symmetric spaces
by algebraic and geometric considerations, and on investigation of Hamiltonian structures of such equations.

Another direction [10,11] has concentrated on deriving the known scalar soliton equations from non-stretching
curve flows in various classical plane geometries: hyperbolic plane, affine and fully affine plane, plane similarity
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geometry. These geometries together with the Euclidean plane are characterized by their respective isometry groups
SL(2), S A(2) and A(2), Sim(2), Euc(2), each acting locally and effectively on R2; as such they comprise the main
examples of planar Klein geometries G/H ' R2 where G is the isometry group and H ⊂ G is a stabilizer subgroup
that leaves fixed the origin in R2. In this geometric setting there is a natural group-invariant notion of geometric
curve flows based on the evolution of differential invariants [29] of a non-stretching curve γ , formulated using a
moving frame (T, N ) = (γx , γxx ) where x is a natural G-invariant arclength on γ . Generalizations to non-stretching
flows of space curves in Klein geometries on R3 have also been studied in a few cases [12,13]: Euclidean space
Euc(3), similarity geometry Sim(3), affine space A(3), centro-affine space SL(3). The results obtained to date have
provided an elegant geometric origin for many scalar soliton equations. For instance, the KdV equation and the
Sawada–Kotera equation are noted to arise respectively as a centro-affine and affine version of the mKdV equation
coming from Euclidean geometry. It should be possible to derive the bi-Hamiltonian integrability structure of these
solitons equations by adapting the parallel moving frame approach used in the present work to the setting of affine
geometry and similarity geometry.

2. Preliminaries

A symmetric space M = G/H is irreducible if it is not a product of smaller symmetric spaces. All irreducible
Riemannian symmetric spaces have a classification into two types [20,19]:

(I) G is a connected simple Lie group and H ⊂ G is a compact Lie subgroup invariant under an involutive
automorphism σ of G (in this case M is compact or noncompact according to whether G is).

(II) G is a product K × K for a connected compact simple Lie group K and H is its diagonal product subgroup in
G on which a permutation of the product factors acts as an involutive automorphism σ , with G/H ' K ' H (in
this case, since G is compact, so is M).

Henceforth let M = G/H be an irreducible Riemannian symmetric space in which G acts effectively on the
manifold M by left multiplication. The automorphism σ induces a decomposition on the Lie algebra of G, given
by a direct sum of vector spaces g = h ⊕ m such that σ(h) = h, σ(m ) = −m , with Lie bracket relations
[h, h]g ⊂ h, [h,m ]g ⊂ m , [m ,m ]g ⊂ h, where h is identified with the Lie algebra of H and m = To M is
identified with the tangent space at the origin o in M . The group action of G on M provides a canonical isomorphism
Tx M 'G m .

2.1. Riemannian metric and connection

The Riemannian structure of G/H comes from the Cartan–Killing form 〈·, ·〉 of g. Since g is a simple Lie algebra,
the subspaces h,m are orthogonal 〈h,m 〉 = 0 and hence the Cartan–Killing form restricts to yield a nondegenerate
inner product on m which is Adg(H) invariant. This inner product 〈·, ·〉m has a definite sign, negative or positive,
according to whether g is compact or noncompact. In the noncompact case, the Lie algebra g = h ⊕ m is dual
to g∗

= h ⊕ im which defines a compact real Lie algebra contained in the complexification of g. This leads to a
corresponding duality [20,19] between compact and noncompact Riemannian symmetric spaces of type I. As there
are no noncompact Riemannian symmetric spaces of type II, we will henceforth restrict attention to the compact case
in order to include both types I and II.

Under the canonical identification m 'G Tx M , the negative-definite inner product 〈·, ·〉m defines a Riemannian
metric tensor g on M given by

g(X, Y ) = −〈X, Y 〉m (1)

for all G-invariant vector fields X, Y in Tx M . Associated to this metric g is a unique torsion-free G-invariant
Riemannian connection ∇, determined by ∇g = 0, where

T (X, Y ) = ∇X Y − ∇Y X − [X, Y ] = 0 (2)

is the torsion-free property. Here [·, ·] denotes the commutator of vector fields on M . The Riemann curvature tensor
of the connection ∇ is given by

R(X, Y ) = [∇X ,∇Y ] − ∇[X,Y ] = −adm ([X, Y ]m ) (3)
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with adm viewed as a linear map on Tx M 'G m . This curvature tensor is G-invariant and covariantly constant
∇R = 0. Note that left multiplication by G acting on M generates the isometries of the manifold M , namely the
isometry group of g is G.

Recall, the linear isotropy group H∗ of G/H is the representation of H by linear transformations on To M at the
origin o in M . This group is isomorphic to Adm (H) through the identification To M = m .

2.2. Klein geometry and soldering frames

For any Riemannian symmetric space M = G/H , the Lie group G has the structure of a principal H -bundle over
M , π : G → G/H [20,33]. Consider the Maurer–Cartan form wG on G, which is a left-invariant g-valued 1-form
that provides the canonical identification TeG = g where e is the identity element of G. The Maurer–Cartan form
satisfies dwG +

1
2 [wG , wG]g = 0 and hence, viewed geometrically, it is a zero-curvature connection on the bundle G.

This collective structure is called [33] the Klein geometry of M = G/H . It has a useful reformulation locally on M
involving the Lie algebra structure of the tangent spaces of G/H .

Let ψ : U → π−1(U ) ⊂ G be any local section of this bundle, where (U, ψ) are coordinates for a local
trivialization G ≈ U × H . The tangent space of the trivialization U × H at any point (x, ψ(x)) is isomorphic to
the Lie algebra g of G. In particular, note π∗

: g ' m × h → m as vector spaces, with Tx M 'G m = g/h,
Tψ(x)H ' h and T(x,ψ(x))G ' g = m ⊕ h. Now, the pullback of the Maurer–Cartan form wG by ψ yields a g-valued
1-form g

ω (locally) on M , satisfying the Cartan structure equation

D g
ω+

1
2
[
g
ω,

g
ω]g = 0 (4)

where D is the total exterior derivative operator on M and [·, ·]g is understood to denote the Lie algebra bracket in g

composed with the wedge product in T ∗
x M . (Informally, we can view g

ω : Tx M 'G m = g/h → g as attaching an
infinitesimal Klein geometry to g/h.) Note a change of the local sectionψ , described by a smooth function h : U → H
yielding the local section ψ̃ = ψh, induces a change of g

ω given by

g̃
ω = Ad(h−1)

g
ω+h−1 Dh. (5)

This is called [33] a gauge transformation on g
ω relative to the gauge ψ .

Introduce

e :=
1
2
(
g
ω−σ(

g
ω)), ω :=

1
2
(
g
ω+σ(

g
ω)), (6)

denoting the even and odd parts of g
ω, defined using the automorphism σ of g. The corresponding decomposition

under a gauge transformation on g
ω yields

ẽ = Ad(h−1)e, ω̃ = Ad(h−1)ω + h−1 Dh. (7)

Proposition 2.1. On U ⊂ M, the m -valued 1-form e represents a linear coframe and the h-valued 1-form ω

represents a linear connection, with H as the structure (gauge) group defining a bundle of linear frames.

Let the 2-forms

T = De + [ω, e]g = De and R = Dω +
1
2
[ω,ω]h = [D,D] (8)

denote the m -valued torsion and h-valued curvature associated to the linear connection and coframe, where

D = D + [ω, ·]g (9)

is the (gauge) covariant exterior derivative.
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Proposition 2.2. The Cartan structure equation (4) decomposes with respect to σ to give

T = 0, R = −
1
2
[e, e]m , (10)

so thus D is torsion-free and has covariantly constant curvature.

The precise interpretation of e and ω in these propositions comes from a basis expansion e = eama , ω = ωi hi ,
where ma,hi are any fixed orthonormal basis for m , h with respect to the Cartan–Killing inner product,

〈ma,mb
〉 = −δab, 〈hi ,h j

〉 = −δi j , 〈ma,hi
〉 = 0. (11)

Then {ea} will define frame covectors spanning the cotangent space of M at x , and {ωi } will define connection 1-forms
related to the exterior derivative of the frame covectors by the torsion-free property of the covariant derivative D on
M at x .

Most importantly, e and ω provide a natural soldering of this frame geometry of M = G/H locally onto the
Riemannian geometry of M = G/H . Let e∗ be dual to e, namely a m -valued vector such that −〈e∗, e〉m = idx is the
identity map on Tx M . Then e∗ represents an orthonormal linear frame on U ⊂ M , so thus {e∗

a} as given by a basis
expansion e∗

= e∗
ama will define frame vectors spanning the tangent space of M at x and obeying the orthonormality

property e∗
aceb = δab.

Theorem 2.3. The linear coframe e and linear connection ω determine a Riemannian metric and Riemannian
connection on M = G/H given by

g = −〈e, e〉m , ∇· = −〈e∗,D(ec·)〉m = −〈e∗, D(ec·)+ [ω, (ec·)]g〉m . (12)

In particular, for all X, Y in Tx M,

g(X, Y ) = −〈eX , eY 〉m (13)

and

∇X Y = −〈e∗,DX eY 〉m , or equivalently DX eY = ec∇X Y (14)

where eX = ecX, eY = ecY are the coframe projections of X, Y . Moreover, the Riemannian curvature is determined
by the curvature of the exterior covariant derivative D,

R(X, Y )Z = −〈e∗, [DX ,DY ]eZ −D[X,Y ]eZ 〉m = −〈e∗, [RX,Y , eZ ]g〉m (15)

with (cf. Proposition 2.2)

RX,Y = Rc(X ∧ Y ) = −[eX , eY ]m . (16)

Hence

R(X, Y ) = 〈[[eX , eY ]m , e]g, e∗
〉m , (17)

or equivalently

R(·, ·) = −〈[ec·, ec·]m , [e
∗, e]m 〉h. (18)

Here note [e∗, e]m defines a h-valued linear map on Tx M displaying skew-symmetry with respect to g:
g(Y, [e∗, e]m X) = [eY , eX ] = −g(X, [e∗, e]m Y ).

Remark. The torsion-free property of the Riemannian connection is expressed by (cf. Proposition 2.2)

T (X, Y ) = −〈e∗, (DY e)cX − (DX e)cY 〉m = −〈e∗,TX,Y 〉m = 0 (19)

with

TX,Y = Tc(X ∧ Y ). (20)
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The soldering structure of the Riemannian connection has the following alternative formulation.

Corollary 2.4. For all X, Y in Tx M,

∇X e = [e, ωX ]g, [∇X ,∇Y ]e − ∇[X,Y ]e = −ecR(X, Y ) = [e,RX,Y ]g (21)

where ωX = Xcω is the linear connection projected in the X direction on M.

In examples, it will be convenient to work in a matrix representation for m , h, g viewed as subspaces in gl(N ,R)
for suitable N ≥ 1. Hence ma,hi will then represent N × N matrices satisfying the commutator relations

[hi ,h j
] = ci j

khk, [ma,mb
] = cab

i hi , [hi ,ma
] = cia

bmb, (22)

where ci j
k, cab

i cia
b are the structure constants of g with respect to the matrix basis {ma,hi

}. More directly, h and g
can be represented as matrix subalgebras in gl(N ,R), with m represented as the matrix subspace g/h in gl(N ,R).
Then the soldering structure is given by matrix formulas

g(X, Y ) = −χ tr(eX eY ), (23)

∇X Y = −χ tr(e∗DX eY ), R(X, Y ) = −χ tr([e∗, e][eX , eY ]), (24)

for some constant χ depending on the choice of matrix representation of m , where eX = (eacX)ma , eY = (eacY )ma

are N × N matrices belonging to m ; e = eama , e∗
= e∗

ama are N × N vector-valued matrices belonging to T ∗
x M ⊗m ,

Tx M ⊗ m respectively. Moreover,

∇X e∗
a = −cib

a(ωX )i e
∗

b, (25)

R(X, Y )e∗
a = −cib

a(RX,Y )i e
∗

b = ccd
i c

ib
a XcYde∗

b, (26)

with Xa = eacX, Ya = eacY .
Due to the soldering, the frame covectors obey the orthonormality property g(e∗

a, e∗

b)
−1

= −tr(mamb).

2.3. Action of ad(e)

It is useful to consider an algebraic decomposition of g with respect to ad(e) where e is the soldering frame. Let
X be a vector in Tx M and consider the element eX = ecX given by the frame projection of X into m ⊂ g. The
centralizer of eX is the set c(eX ) of all elements annihilated by ad(eX ) in the Lie algebra g, namely [eX , c(eX )] = 0.
This set has the obvious structure of a Lie subalgebra of g, since ad(eX )[c(eX ), c(eX )] = 0 from the fact that ad acts
as a derivation on the Lie bracket of g. Write c(eX )m , c(eX )h for the intersection of c(eX ) with the subspaces m , h in
g = m ⊕ h, and c(eX )

⊥
m , c(eX )

⊥

h for their respective orthogonal complements (perp spaces) where

m = c(eX )m ⊕ c(eX )
⊥
m , h = c(eX )h ⊕ c(eX )

⊥

h . (27)

Thus, note [eX , c(eX )m ] = [eX , c(eX )h] = 0, while [eX , c(eX )
⊥
m ] 6= 0, [eX , c(eX )h] 6= 0.

Proposition 2.5. The centralizer subspaces c(eX )m , c(eX )h of eX have the Lie bracket relations

[c(eX )h, c(eX )h] ⊆ c(eX )h, (28)

[c(eX )h, c(eX )m ] ⊆ c(eX )m , [c(eX )m , c(eX )m ] ⊆ c(eX )h. (29)

Hence the perp spaces satisfy the relations

[c(eX )h, c(eX )
⊥

h ] ⊆ c(eX )
⊥

h , [c(eX )m , c(eX )
⊥
m ] ⊆ c(eX )

⊥

h , (30)

[c(eX )h, c(eX )
⊥
m ] ⊆ c(eX )

⊥
m , [c(eX )m , c(eX )

⊥

h ] ⊆ c(eX )
⊥
m . (31)



S.C. Anco / Journal of Geometry and Physics 58 (2008) 1–37 9

The proof uses just the Lie bracket structure of g along with the invariance of the Cartan–Killing inner product. For
instance, consider [c(eX )h, c(eX )h]. Because ad(eX ) is a derivation it annihilates [c(eX )h, c(eX )h] and hence, since h

is a Lie subalgebra of g, [c(eX )h, c(eX )h] is contained in c(eX )h. Thus [c(eX )h, c(eX )h] is orthogonal to c(eX )
⊥

h , and

so by invariance, 0 = 〈c(eX )
⊥

h , [c(eX )h, c(eX )h]〉h = 〈c(eX )h, [c(eX )h, c(eX )
⊥

h ]〉h which implies [c(eX )h, c(eX )
⊥

h ] is

contained in c(eX )
⊥

h . The other relations are established similarly.
The observation that eX lies in c(eX )m , combined with the Lie bracket relations in Proposition 2.5, shows that

ad(eX ) maps c(eX )h into c(eX )m , c(eX )
⊥

h into c(eX )
⊥
m , and vice versa. Consequently, ad(eX )

2 is well defined as

a linear mapping of the subspaces c(eX )
⊥

h and c(eX )
⊥
m into themselves. These subspaces are likewise taken into

themselves by all the linear maps ad(c(eX )h), corresponding to the infinitesimal action of the group of linear
transformations that preserves eX . In particular, let H∗

X be the closed subgroup in the linear isotropy group H∗ given
by Ad(h)eX = eX . Since [ad(eX ), ad(c(eX )h)] = ad([eX , c(eX )h)] = 0, note that c(eX )h is isomorphic to the Lie
algebra of H∗

X and that the linear transformations in this group commute with the linear map ad(eX )
2. Schur’s lemma

applied to ad(eX )
2 now gives the following result.

Proposition 2.6. (i) c(eX )
⊥
m and c(eX )

⊥

h are isomorphic as vector spaces under the linear map ad(eX ).(ii) c(eX )
⊥
m

and c(eX )
⊥

h each decompose into a direct sum of subspaces given by irreducible representations of the group H∗

X on

which the linear map ad(eX )
2 is a multiple of the identity.

Note dim c(eX )
⊥
m = dim c(eX )

⊥

h = dim m − dim H∗

X , so these spaces will be of minimal dimension (depending on
eX ) precisely when the group H∗

X is of maximal size.
The decomposition of these vector spaces in Proposition 2.6 will be maximally irreducible whenever the linear map

ad(eX )
2 has equal eigenvalues, whereby ad(eX )

2
= χ id⊥ is a multiple of the identity map id⊥ on c(eX )

⊥
m ' c(eX )

⊥

h . In
this situation, additional Lie bracket relations can be established as follows. Introduce the bracket (·, ·) := [ad(eX )· , · ]

on the centralizer subspace c(eX )
⊥
g := c(eX )

⊥
m ⊕ c(eX )

⊥

h of eX in g, and write IX := ad(eX )
2. Since ad(eX ) acts as a

derivation, note

IX (y, z) = [ad(eX )IX y, z] + [ad(eX )y, IX z] + 2[IX y, ad(eX )z]

= (IX y, z)+ (y, IX z)− 2(z, IX y) (32)

for all vectors y, z in c(eX )
⊥
g . Now suppose IX = χ id⊥, where χ is a non-zero constant. Then the identity (32)

yields χ id⊥(y, z) = 2χ(y, z) − 2χ(z, y) and hence (y, z)⊥ = 2(z, y)⊥ where a subscript ⊥ denotes projection
onto c(eX )

⊥
g . This identity implies (y, y)⊥ = 0, and hence by polarization, (y, z)⊥ = 0. As a result, it follows that

0 = (y, z)⊥ − (z, y)⊥ = [ad(eX )y, z]⊥ + [y, ad(eX )z]⊥ = id⊥ad(eX )[y, z] whence [y, z]⊥ = 0 since ad(eX ) is
nondegenerate on c(eX )

⊥
g .

Proposition 2.7. If ad(eX )
2

= χ id⊥ is multiple of the identity on c(eX )
⊥
m ' c(eX )

⊥

h , then these centralizer subspaces
obey the Lie bracket relations

[c(eX )
⊥

h , c(eX )
⊥

h ] ⊆ c(eX )h, [c(eX )
⊥
m , c(eX )

⊥
m ] ⊆ c(eX )h, (33)

[c(eX )
⊥
m , c(eX )

⊥

h ] ⊆ c(eX )m . (34)

2.4. Cartan spaces

The algebraic structure of the spaces c(eX )
⊥

h and c(eX )
⊥
m along with the group H∗

X will have a key role in the later
construction of a parallel moving frame formulation for curve flows in Riemannian symmetric spaces. Part of this
algebraic structure is effectively independent of eX .

Let c0(eX ) denote the center of c(eX ), which is an abelian subalgebra of g. Write c0(eX )m , c0(eX )h, for the
intersections of c0(eX ) with m , h, and write a for any maximal abelian subspace in m .

It can be shown [19] that the image of any maximal abelian subspace a under the group H∗ is the vector space
Ad(H)a = m . Hence eX is contained in some such subspace, namely a = c0(eX )m ⊆ c(eX )m ⊂ m . These subspaces
a ⊂ m are known to have the following characterization [19].
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Lemma 2.8. (i) Any two maximal abelian subspaces a are isomorphic to one another under some linear
transformation in H∗

' Ad(H).
(ii) Every maximal abelian subspace a is invariant under the Weyl group W = C(a)/N (a), which is a finite subgroup

contained in the linear isotropy group H∗, where C(a) and N (a) are respectively the centralizer group and
normalizer group of a in H∗.

(iii) Any maximal abelian subspace a is the −1 eigenspace in some Cartan subalgebra of the Lie algebra g = m ⊕ h
under the grading σ(m ) = −m , σ (h) = h, and hence a is the centralizer of its elements in m , a = c(a) ⊂ m .

Henceforth the subspaces a ⊂ m will be referred to as Cartan subspaces of m in g. The close relationship between
the subspaces a and the Cartan subalgebras of g leads to a more explicit description of the algebraic decomposition of
g with respect to ad(eX )

2.
Let gC be the complexification of g. Recall, a root of g is a linear function, α, from any Cartan subalgebra g0 of gC

into C, such that for all vectors w in g0, ad(w) has an eigenvector with the eigenvalue α(w). Let the set of all roots of
g be denoted ∆. The following lemma is adapted from results in [19], utilizing the fact that c(eX )

⊥
m is contained in a⊥

as a consequence of the inclusion a ⊆ c(eX )m .

Lemma 2.9. Let ∆m be the set of roots α of g such that α(a) 6= 0 for some a in a Cartan subspace a ⊂ m . Since
g is compact, α(a) will be an imaginary function (namely α : a → iR). Then there exists a basis of vectors {yα} in
c(eX )

⊥
m and {zα} in c(eX )

⊥

h , indexed by a certain subset of the roots α in ∆m , satisfying the Lie bracket relations

[yα, a]g = iα(a)zα, [zα, a]g = −iα(a)yα (35)

for all vectors a in a. Hence the eigenvalues of the linear map ad(a)2 on its eigenspaces in c(eX )
⊥
m , c(eX )

⊥

h are given

by α(a)2 < 0 (cf. Proposition 2.6). Note ad(a)2 will be a multiple of the identity precisely when its eigenvalues α(a)2

are equal.

3. Parallel moving frames and bi-Hamiltonian operators

On a n-dimensional Riemannian manifold M , a frame is a basis of the tangent space Tx M at each point x in M ,
and a coframe is a dual basis of T ∗

x M . Let {ea} be an orthonormal coframe and {e∗
a} its dual frame, a = 1, . . . , n,

namely g(ea, eb) = e∗
aceb = δab. Covariant derivatives of the frame in any direction X at a point in M are given

in terms of the frame connection 1-forms ωa
b

= −ωb
a by ∇X ea = −(ωa

b
cX)eb. Here the frame structure group

(modulo reflections) is the rotation group SO(n). A moving frame along a curve γ (x) in M is the restriction of a
frame to Tγ M , or correspondingly a coframe to T ∗

γ M , describing a cross section of the orthonormal frame bundle
over γ . SO(n) gauge transformations allow a moving frame to be adapted to γ such that

e∗
a =

{
e∗

‖
, a = 1;

(e∗

⊥
)a, a = 2, . . . , n

(36)

where e∗

‖
= X is the unit tangent vector along γ and each (e∗

⊥
)a is a unit normal vector with respect to γ . An adapted

frame is preserved by the SO(n − 1) group of local rotations in the normal space of γ . This gauge freedom can be
used to geometrically adapt the connection matrix

(ωX )ab := ωabcX = g(e∗
a,∇x e∗

b) (37)

to γ such that the derivative of the tangent vector in the frame is normal to γ while the derivative of each normal
vector is tangential to γ . Such a moving frame is said to be parallel [9]:

∇x e∗

‖
⊥ e∗

‖
, ∇x (e

∗

⊥
)a ‖ e∗

‖
. (38)

Note the connection matrix ωab
X of a parallel moving frame is skew-symmetric with only its top row and left column

being non-zero, as a consequence of the parallel property

g(e∗

‖
,∇x e∗

‖
) = 0, g((e∗

⊥
)a,∇x (e

∗

⊥
)b) = 0. (39)

This property is preserved by any rigid (x-independent) SO(n − 1) rotation in the normal space of γ , which thereby
defines the equivalence group for parallel moving frames.
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Any parallel moving frame differs from a classical Frenet frame [17], if n > 2, by an x-dependent SO(n − 1)
rotation acting in the normal space of the curve γ (see [35] for a geometric interpretation of this rotation). It is
well known that the components of a Frenet connection matrix along γ are differential invariants of the curve [17].
Consequently, the components of a parallel connection matrix are thus differential covariants of γ in sense that they
are invariantly defined up to the covariant action of the equivalence group of rigid SO(n − 1) rotations.

There is a purely algebraic characterization of the connection matrix of a parallel moving frame [3]. Fix the standard
orthonormal basis of Rn , given by n row vectors ma whose ath component is 1, with all other components equal to
0, where a = 1, . . . , n. Similarly, fix the standard basis of the Lie algebra so(n) induced from the isomorphism
Rn

∧ Rn
' so(n), where a wedge denotes the vector outer product. (Note the natural action of so(n) on Rn is

defined here by right multiplication of skew-matrices on row vectors.) This basis consists of n(n −1)/2 skew-matrices
hi

= ma
∧ mb whose only non-zero components are 1 in the ath row and bth column, and −1 in the bth row and ath

column, where i is identified with (a, b) such that a < b, for a, b = 1, . . . , n.
Now, there are associated to the frame e∗

a and its covariant derivatives the Rn-valued linear coframe e = eama and
the so(n)-valued linear connection 1-form ω = ωabma

∧ mb satisfying soldering relations [20] analogous to the ones
(12), where e represents a linear map from Rn onto Tx M . These relations state that ∇ has no torsion

de − e ∧ ω = T = 0 (40)

and carries curvature

dω + [ω,ω]so(n) = R (41)

determined by the frame components of the Riemann curvature tensor [∇,∇] of the metric g on M .
Write m

‖
:= m1 when a = 1, ma

⊥
:= ma when a = 2, . . . , n, so thus e‖ = e1m

‖
and e⊥ = eama

⊥
describe

the tangential and normal parts of the linear coframe e = e‖ + e⊥ relative to X , with e⊥cX = 0 for the tangent
vector X and e‖cY = 0 for all normal vectors Y along γ . Consider the derivatives of the coframe e along γ and
decompose the connection matrix ωX := ωcX = ω0

X + ω⊥

X into separate parts given by ω0
X = (ωX )abma

⊥
∧ mb

⊥
= 0

and ω⊥

X = (ωX )1am
‖
∧ma

⊥
6= 0. Observe that in this decomposition hi

⊥
:= ma

⊥
∧mb

⊥
is a basis for the Lie subalgebra

so(n − 1) ' Rn−1
∧ Rn−1 where Rn−1

⊂ Rn is the subspace orthogonal to m
‖
, while hi

‖
:= m

‖
∧ ma

⊥
is a basis for

the perp space of so(n − 1) ⊂ so(n).

Proposition 3.1. A linear coframe e = e‖ + e⊥ along a curve γ (x) in a Riemannian manifold M is a parallel moving
frame iff its connection matrix ωX vanishes on the Lie subalgebra so(n − 1) ⊂ so(n) of the SO(n − 1) rotation
subgroup that leaves the tangent covector e‖ invariant under the SO(n) frame structure group.

This algebraic characterization of the connection matrix of a moving parallel frame for curves in Riemannian
geometry has a direct generalization to the setting of Klein geometry following the ideas in [3].

3.1. Construction of parallel moving frames in Klein geometry

Let γ (x) be a smooth curve in some n-dimensional compact Riemannian symmetric space M = G/H , and write
X = γx for its tangent vector with an affine parametrization so that x is the arclength. Locally on M , introduce a
m -valued linear coframe e and a h-valued linear connection ω satisfying the soldering relations (12) in terms of the
Riemannian metric g and connection ∇ on the manifold M , where m = g/h is the vector space quotient of the Lie
algebras g, h. This structure naturally arises from the Klein geometry of the Lie group G viewed as a principle bundle
over M whose structure group is the Lie subgroup H ⊂ G. The projections of e and ω along the curve γ (x)

eX := ecX, ωX := ωcX (42)

provide a moving frame formulation of this curve such that the frame structure group is the linear isotropy group
H∗

' Ad(H) acting as local gauge transformations (7). The arclength property of x in this formulation is expressed
by |X |g = |eX |m = 1 so eX has unit norm in the Cartan–Killing metric on m (where |eX |

2
m = −〈eX , eX 〉m ).

Informally, e can be regarded as a nondegenerate cross section of the Klein bundle (T ∗M ⊗ m , H) over γ (x), where
m ' Rn . This bundle is a reduction [20] of the orthonormal frame bundle of M , with the structure group SO(n)
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reduced to H . (In fact, H ⊆ SO(n) with equality holding only when M = G/H is a constant curvature manifold,
M = Sn

' SO(n + 1)/SO(n) in the compact case.)
Recall [19], the vector space m = g/h has the algebraic structure of a union of orbits generated by the group H∗

acting on any fixed Cartan space (a maximal abelian subspace) a ⊂ m (all of which are isomorphic). Every such
subspace a, moreover, is a finite union of closed convex sets a∗(m ) ⊆ a that are mutually isomorphic under the Weyl
group W ⊂ H∗ leaving a invariant. (Up to closure, these sets a∗ in a each can be identified with Weyl chambers [19]
associated to the set of positive roots of the Lie algebra g relative to m .)

Since H∗ acts as a group of local gauge transformations on e and ω, a gauge equivalent coframe exists such that, at
every point x along γ , eX is a constant unit vector that lies in the (fixed) Cartan space a ⊂ m on which the Weyl group
acts as a discrete gauge equivalence group. This leads to the following algebraic characterization for curves γ (x).

Proposition 3.2. The constant unit vector eX ⊂ a defines an algebraic invariant of the curve γ . Thus, all curves on
M = G/H can be divided into algebraic classes in one-to-one correspondence with the unit-norm elements in the
closed convex set a∗(m ) ' a/W as determined by eX .

For a given vector eX , a linear coframe e along γ is determined only up to local gauge transformations (7) given
by the group H∗

X ⊂ H∗ that preserves eX ⊂ a. Such transformations will be referred to as the isotropy gauge group
of γ . The isotropy gauge freedom can be used to adapt e and ω to γ in a preferred way, generalizing the algebraic
notion of a parallel moving frame for curves in Riemannian geometry stated in Proposition 3.1.

Definition 3.3. A m -valued linear coframe e along a curve γ (x) in a Riemannian symmetric space M = G/H is said
to be H -parallel if its associated h-valued linear connection ωX in the tangent direction X = γx of the curve lies in
the perp space c(eX )

⊥

h of the Lie subalgebra c(eX )h ⊂ h of the isotropy gauge group H∗

X ⊂ H∗ that preserves eX

given by a fixed unit vector in a ⊂ m .

To explain the geometrical meaning of such a coframe, first decompose the dual frame e∗
= e∗

‖
+ e∗

⊥
and the

connection ω = ω‖
+ ω⊥ according to

m = c(eX )m ⊕ c(eX )
⊥
m , h = c(eX )h ⊕ c(eX )

⊥

h , (43)

relative to the unit vector eX ⊂ a ⊂ m . The m -valued linear frame e∗ will provide a framing of the curve γ in
M (namely a linear map from the vector space m ∗

' Rn onto T ∗
x M over γ (x)) once a basis expansion for m , h is

introduced. Note the condition for e∗ to be H -parallel is

ω
‖

X := ω‖
cX = 0 (44)

along with

Dx eX = 0, |eX |m = 1. (45)

Remark. This property ω‖

X = 0 is maintained by rigid (x-independent) gauge transformations in H∗

X that preserve eX ,
since under these transformations, Ad(h−1)X = X implies Ad(h−1)ω⊥

X belongs to c(eX )h and hence the transformed

linear connection (7) satisfies ω̃‖

X = 0. All such transformations comprise the equivalence group, denoted H∗

‖
, for

H -parallel moving frames. The infinitesimal equivalence group is simply given by the centralizer Lie subalgebra
c(eX )h ⊂ h, as seen from the Lie bracket relations (30) and (31). Note H∗

‖
preserves the decomposition (43) of the

tangent space Tγ M 'G = m into algebraically parallel and perpendicular parts with respect to X .

Let {ma
‖
,hi

‖
} be respective orthonormal bases for the subspaces c(eX )m , c(eX )h, so

ad(eX )ma
‖

= ad(eX )hi
‖

= 0 (46)

(where a = 1, . . . , dim c(eX )m ; i = 1, . . . , dim c(eX )h). Recall, the perp subspaces c(eX )
⊥
m , c(eX )

⊥

h are isomorphic

under the linear map ad(eX ), and so let {ma
⊥
,hi

⊥
} be respective orthonormal bases for c(eX )

⊥
m ' c(eX )

⊥

h related by
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ma
⊥

= ad(eX )
−1hi

⊥
(where a, i = 1, . . . , dim c(eX )

⊥
m = dim c(eX )

⊥

h ). Orthonormality of each basis is given by

〈ma
‖
,mb

‖
〉m = 〈ma

⊥
,mb

⊥
〉m = −δab, (47)

〈hi
‖
,h j

‖
〉h = 〈hi

⊥
,h j

⊥
〉h = −δi j , (48)

and

〈ma
⊥
,mb

‖
〉m = 〈hi

⊥
,h j

‖
〉h = 0. (49)

Now, write

(e∗

‖
)a = −〈ma

‖
, e∗

〉m , (e∗

⊥
)a = −〈ma

⊥
, e∗

〉m , (50)

and

(ω‖)i = −〈hi
‖
, ω〉h, (ω⊥)i = −〈hi

⊥
, ω〉h, (51)

yielding the basis expansion of e∗, ω. As a consequence of properties (46)–(49), the vectors (e∗

‖
)a and (e∗

⊥
)a will be

said, respectively, to be algebraically parallel (‖) and perpendicular (⊥) to the tangent vector X = γx along the curve.
This framing is adapted to γ if it contains X as one of the vectors parallel to X , (say for a = 1)

(e∗

‖
)1 = X, (52)

which can be achieved by letting m1
‖

= eX be one of the basis vectors of c(eX )m .

Lemma 3.4. The frame vectors {(e∗

‖
)a, (e∗

⊥
)a} provide an orthonormal basis of Tγ M over the curve γ (x). Through the

soldering formula (25), their covariant derivatives in the tangent direction X = γx are determined by the connection
matrices (ω⊥

X )i c
ib

a with (ω‖

X )i c
ib

a = 0.

The Lie bracket relation (31) between c(eX )
⊥

h and c(eX )m now leads to an explicit geometric interpretation of
the H -parallel property. Note Y is algebraically ‖ to X iff ad(eX )eY = [eX , eY ] = 0 namely eY := ecY belongs to
c(eX )m . Likewise Y is algebraically ⊥ to X iff eY belongs to c(eX )

⊥
m .

Theorem 3.5. For any H-parallel frame along a curve γ (x), the covariant derivatives ∇x (e∗

‖
)a , a =

1, . . . , dim c(eX )m , are algebraically ⊥ to the tangent vector X = γx . The other covariant derivatives ∇x (e∗

⊥
)a ,

a = 1, . . . , dim c(eX )
⊥
m , are algebraically ‖ to X iff the Lie bracket relation [c(eX )

⊥
m , c(eX )

⊥

h ]g ⊆ c(eX )m holds,

which is always the case whenever the linear map ad(eX )
2 is a multiple of the identity on the vector spaces

c(eX )
⊥
m ' c(eX )

⊥

h (cf. Corollary 2.4).

These geometric properties of an H -parallel frame are a strict generalization of the Riemannian case (38) whenever
dim c(eX )

⊥
m > 1, or [c(eX )

⊥
m , c(eX )

⊥

h ]g ∩ c(eX )
⊥
m 6= 0.

There is a further geometric meaning for an H -parallel connection itself. Recall, the principal normal along any
affine-parametrized curve is the normal vector [17]

N = ∇xγx . (53)

Proposition 3.6. In an H-parallel adapted frame along a curve γ (x), the principal normal is given by N =

〈ad(eX )ω
⊥

X , e∗
〉m with the frame components N a

= eacN = (ω⊥

X )i c
i1

a := (ω⊥

X )a where ci1
a = ad(eX )a

i is an
invertible matrix (a, i = 1, . . . , dim c(eX )

⊥
m = dim c(eX )

⊥

h ). Moreover, these components are differential covariants
of the curve with respect to the rigid equivalence group (of x-independent linear transformations) H∗

‖
⊂ H∗

(preserving the framing). Namely the set of components (ω⊥

X )i c
i1

a is invariantly defined by γ (x) up to the covariant
action of the group H∗

‖
.

An important final remark now is that the H -parallel condition (44) on the linear connection ω can always be
achieved by means of a suitable gauge transformation (7) as follows. Under the isotropy gauge group H∗

X , ω‖

X is
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transformed to ω̃‖

X = Ad(h−1)ω
‖

X + h−1 Dx h where h is an arbitrary smooth function from the curve γ (x) ⊂ M

into the Lie subgroup of H∗

X ⊂ H , satisfying Ad(h−1)eX = 0. Condition (44) applied to ω̃‖

X yields an ODE

on h(x), h−1 Dx h = −Ad(h−1)ω
‖

X , for which local existence of a solution is a standard result. (In particular,
in the adjoint representation of H and h, this ODE becomes a linear homogeneous matrix differential equation
Dx Ad(h) = −Ad(h)ad(ω‖

X ).) This result is a straightforward generalization of the standard existence of a parallel
moving frame in the Riemannian setting.

Proposition 3.7. By means of a gauge transformation in the isotropy gauge group H∗

X , an H-parallel frame
{(e∗

‖
)a, (e∗

⊥
)a} exists for any curve γ (x) in a given Riemannian symmetric space G/H and is unique up to the

equivalence group H∗

‖
⊂ H∗ consisting of rigid (x-independent) gauge transformations that preserve the algebraic

structure (43)–(45) of the framing along γ (x).

4. Derivation of bi-Hamiltonian operators from non-stretching curve flows

Consider an arbitrary smooth flow γ (t, x) of any smooth curve in an n-dimensional Riemannian symmetric space
M = G/H . Write X = γx for the tangent vector and Y = γt for the evolution vector along the curve. Provided
the flow is transverse to the curve, namely X and Y are not parallel vectors, then γ (t, x) will describe a smooth
two-dimensional surface immersed in the manifold M .

The torsion and curvature equations of the Riemannian connection ∇ on M restricted to this surface γ (t, x) are
given by

T (X, Y ) = ∇xγt − ∇tγx = 0, (54)

R(X, Y ) = [∇x ,∇t ] = −adm ([γx , γt ]m ), (55)

where [·, ·]m is the Lie bracket on m = g/h with the canonical identification m 'G Tx M . There is a straightforward
frame formulation for these equations obtained from the pullback of the Cartan structure equations (10) for any m -
valued linear coframe e and h-valued linear connection ω on the surface γ (t, x):

Dx et − Dt ex + [ωx , et ]g − [ωt , ex ]g = 0, (56)

Dxωt − Dtωx + [ωx , ωt ]h = −[ex , et ]m , (57)

where

ex := ecX = ecγx , et := ecY = ecγt , (58)

ωx := ωcX = ωcγx , ωt := ωcY = ωcγt . (59)

These structure equations coincide with the zero-curvature equation (4) for G viewed as a H -bundle in a local
trivialization over the surface γ (t, x) in M . In particular, in local coordinates for G ≈ U × H , the g-valued connection
1-form e + ω =

g
ω coincides with the pullback of the left-invariant Maurer–Cartan form on G to U |γ ⊂ M , locally

giving a soldering of the frame geometry of G/H onto the Riemannian geometry of the manifold M .

4.1. Non-stretching geometric curve flows

A curve flow γ (t, x) is non-stretching (inextensible) if it preserves the arclength ds = |γx |dx at every point on
the curve, namely Dt |γx | = 0 or equivalently ∇tγx (= ∇xγt ) is orthogonal to γx in the Riemannian metric g on
M . Now let γ (t, x) be a non-stretching curve flow given in terms of an affine parametrization |γx | = 1, without
loss of generality, where x measures arclength along the curve. For any such flow, there exists an H -parallel frame
formulation obtained through Proposition 3.7. In particular, a suitable local gauge transformation in H∗

' Ad(H)
(given by a change of coordinates for the local trivialization of G) can be applied to the linear coframe e and linear
connection ω to produce an H -parallel moving frame along each curve in the flow γ (t, x), depending smoothly on t .

Lemma 4.1. In an H-parallel frame formulation for non-stretching curve flows, the projections (58) and (59) of e
and ω in the tangent direction X = γx and the flow direction Y = γt have the following properties:
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(i) ex belongs to some Cartan space a ⊂ m , is constant (Dx ex = 0), and has the normalization |ex |m = 1;
(ii) et := h‖ + h⊥ and ωt := $ ‖

+$⊥ each decompose into algebraically parallel and perpendicular parts relative
to ex , namely h‖ and $ ‖ belong to the centralizer subspaces m ‖ := c(eX )m and h‖ := c(eX )h while h⊥ and $⊥

belong to the perp spaces m ⊥ := c(eX )
⊥
m and h⊥ := c(eX )

⊥

h ;

(iii) u := ωx belongs to the perp space h⊥;
(iv) h⊥, ex , u respectively determine the perpendicular flow vector Y⊥ = (γt )⊥ = −〈h⊥, e∗

〉m , the tangent vector
X = γx = −〈ex , e∗

〉m , and the principal normal vector N = ∇xγx = −〈ad(ex )u, e∗
〉m for the curve.

The Lie bracket relations in Proposition 2.5 on the spaces m = m ‖ ⊕ m ⊥ and h = h‖ ⊕ h⊥ lead to a
corresponding decomposition of the Cartan structure equations (56) and (57) expressed in terms of the variables
ex , h‖, h⊥,$

‖,$⊥, u. The torsion equation becomes

0 = Dx h‖ + [u, h⊥]‖, (60)

0 = ad(ex )$
⊥

+ Dx h⊥ + [u, h‖] + [u, h⊥]⊥, (61)

while the curvature equation becomes

0 = Dx$
‖
+ [u,$⊥

]‖, (62)

ad(ex )h⊥ = Dt u − Dx$
⊥

+ [$ ‖, u] + [$⊥, u]⊥, (63)

where [·, ·]‖ denotes the restriction of the Lie bracket on g to m ‖ or h‖, and likewise [·, ·]⊥ denotes the restriction to
m ⊥ or h⊥. Note that, in the present notation, the Lie bracket relations consist of

[m ‖,m ‖] ⊆ h‖, [h‖,m ‖] ⊆ m ‖, [h‖, h‖] ⊆ h‖, (64)

[m ‖,m ⊥] ⊆ h⊥, [h‖,m ⊥] ⊆ m ⊥, [h⊥,m ‖] ⊆ m ⊥, [h‖, h⊥] ⊆ h⊥, (65)

so thus

[m ‖,m ‖]⊥ = [h‖,m ‖]⊥ = [h‖, h‖]⊥ = 0, (66)

and

[m ‖,m ⊥]‖ = [h‖,m ⊥]‖ = [h⊥,m ‖]‖ = [h‖, h⊥]‖ = 0. (67)

Therefore the only brackets with a possibly nontrivial decomposition are [m ⊥,m ⊥] and [h⊥, h⊥].

Lemma 4.2. The Cartan structure equations for any H-parallel linear coframe e and linear connection ω pulled back
to the two-dimensional surface γ (t, x) determine a flow on u = ωx given by

ut = Dx$
⊥

+ [u,$ ‖
] + [u,$⊥

]⊥ + ad(ex )h⊥, (68)

$⊥
= −ad(ex )

−1(Dx h⊥ + [u, h‖] + [u, h⊥]⊥), (69)

with

h‖ = −D−1
x [u, h⊥]‖, $ ‖

= −D−1
x [u,$⊥

]‖, (70)

where D−1
x denotes the formal inverse of the total x-derivative operator Dx .

Note that, once h⊥ is specified, this determines both the flow on u and the curve flow of γ itself, where h‖,$
‖,$⊥

are given in terms of h⊥ by Eqs. (69) and (70). A natural class of geometric flows will now be introduced.

Definition 4.3. A curve flow is said to be geometric if h⊥ is an equivariant m ⊥-valued function of (x, u, ux , . . .)

under the action of the rigid (x-independent) group of linear transformations H∗

‖
, where the arclength variable

x is an invariant of the curve, and the components of flow variable u are differential covariants of the curve (cf
Proposition 3.6).
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In the case of polynomial geometric flows, m ⊥-equivariance means that the function h⊥ is constructible in terms
of (u, ux , . . .) together with ex and x using just the Lie bracket and Cartan–Killing inner product on these variables.
Such flows correspond to curve flows γ (t, x) such that γt = f (x, γx , γxx , . . .) is constructed using the metric g(·, ·)
and the linear map adx (·)

2 on Tx M 'G m via the relations (i)–(iv) in Lemma 4.1.

Proposition 4.4. For a given polynomial geometric flow on u, the curve γ obeys a G-invariant flow equation in M
determined through the identifications

γx ↔ ex , ∇x ↔ Dx + [u, ·]m := Dx , adx (·) ↔ adm (·), g(·, ·) ↔ −〈·, ·〉m . (71)

4.2. Hamiltonian operators and bi-Hamiltonian structure

As a main result, the flow equation on u will now be shown to possess an elegant bi-Hamiltonian structure. To
begin, recall that ad(ex ) as a linear map gives an isomorphism between the spaces m ⊥ and h⊥. Write h⊥

:= ad(ex )h⊥

for the image of h⊥ which belongs to the same perp space h⊥ as u. Expressing u in terms of h⊥ and$⊥ then leads to
the following operator form for the flow equation (68):

ut = H($⊥)+ h⊥, $⊥
= J (h⊥), (72)

where

H = K|h⊥
, J = −ad(ex )

−1K|m ⊥
ad(ex )

−1 (73)

are linear operators which act on h⊥-valued functions and are invariant under H∗

‖
, as defined in terms of the operator

K := Dx + [u, ·]⊥ − [u, D−1
x [u, ·]‖]. (74)

Theorem 4.5. H,J are compatible Hamiltonian cosymplectic and symplectic operators with respect to the h⊥-valued
flow variable u. Consequently, for geometric flows in terms of h⊥(x, u, ux , . . .) the flow equation has an H∗

‖
-invariant

Hamiltonian form

ut = H0(δH/δu) (75)

where H0 = H+ J −1 is a Hamiltonian operator, such that

δH/δu = $⊥
= J (h⊥) (76)

for some Hamiltonian functional H =
∫

H(x, u, ux , . . .)dx. Moreover, all such Hamiltonian flows have a (compatible)
second Hamiltonian structure

ut = J0(δF/δu) (77)

given by J0 = R−1H0, for a Hamiltonian functional F =
∫

F(x, u, ux , . . .)dx satisfying

δF/δu = R($⊥) = J (R(h⊥)) (78)

where R = HJ is a (hereditary) recursion operator.

Here δH/δu denotes the variational derivative of the real-valued functional H. More precisely, δH/δu is defined as
the unique h⊥-valued function of (x, u, ux , . . .) such that

−

∫
〈δH/δu, h⊥

〉dx = δh⊥H (79)

formally holds for all h⊥-valued functions h⊥, where δh⊥ = pr(h⊥
· ∂/∂u) denotes the variation induced by h⊥,

namely the prolongation of the given vector field h⊥
· ∂/∂u on J∞, and where 〈·, ·〉 denotes the (negative-definite)

Cartan–Killing inner product on h⊥. (A dot will denote summation over Lie algebra components with respect to any
fixed basis.)
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The definition of cosymplectic and symplectic operators and a proof of this theorem will be given in
Sections 4.3–4.5. A summary of the basic theory of bi-Hamiltonian operators and Hamiltonian structures for scalar
evolution equations is given in [29,15]. The presentation here will extend this theory to a Lie-algebra-valued setting.

One main property characterizing Hamiltonian operators consists of the symplectic structure they induce on the
x-jet space (x, u, ux , . . .) := J∞ of the flow variable u. In particular, there is associated to H the Poisson bracket
defined by

{H,G}H = −

∫
〈H(δG/δu), δH/δu〉dx (80)

for any pair of functionals H,G. This bracket is skew-symmetric

{H,G}H = −{G,H}H (81)

and obeys the Jacobi identity

{H, {G,F}H}H + {G, {F,H}H}H + {F, {H,G}H}H = 0 (82)

as a consequence of H being cosymplectic. Let h⊥(x, u, ux , . . .) be a function with values in the space h⊥. Then, on
the x-jet space J∞, h⊥

·∂/∂u is a Hamiltonian vector field with respect toH if there exists a (Hamiltonian) functional
H such that

δh⊥G = {G,H}H (83)

for all functionals G. Associated to J is a symplectic 2-form defined by

ω(h⊥

1 · ∂/∂u, h⊥

2 · ∂/∂u)J = −

∫
〈h⊥

1 ,J (h
⊥

2 )〉dx (84)

for any pair of Hamiltonian vector fields given by h⊥

1 , h⊥

2 . The property that ω is symplectic corresponds to the skew-
symmetry and Jacobi identity of the Poisson bracket {·, ·}J −1 defined using the formal inverse of J . (Consequently,
J −1 is formally cosymplectic, and conversely H−1 is formally symplectic.) This 2-form ω gives a canonical pairing
between Hamiltonian vector fields and corresponding covector fields defined as follows. Let $⊥(x, u, ux , . . .) be a
function with values in the space h⊥. Then the covector field $⊥

· du is dual to a Hamiltonian vector field h⊥
· ∂/∂u

if

$⊥
· du := ω(·, h⊥

· ∂/∂u)J (85)

holds with respect to J . As a consequence of J being symplectic, such covector fields are variational, namely there
exists a (Hamiltonian) functional E such that

δh⊥E = −

∫
〈$⊥, h⊥

〉dx (86)

for all vector fields h⊥
· ∂/∂u.

Proposition 4.6. The Hamiltonian (cosymplectic and symplectic) operators (73) give mappings h⊥
· ∂/∂u →

J (h⊥) · du and $⊥
· du → H($⊥) · ∂/∂u between Hamiltonian vector fields and variational covector fields on

the x-jet space of the flow variable u.

Theorem 4.5 and Proposition 4.6 provide a broad generalization of known results on the geometric origin of
bi-Hamiltonian structures in Riemannian symmetric spaces M = G/H . Special cases were first derived in [30,
1] for constant curvature spaces SO(N + 1)/SO(N ) ' SN and subsequently generalized in [3] to the spaces
G/SO(N ), covering all examples in which the bi-Hamiltonian structure is a O(N − 1)-invariant (namely, H∗

‖
=

O(N − 1) ⊂ SO(N )). The proof of Theorem 4.5 in the general case is similar to the special case proven in [30]
where h‖ = so(N − 1) ' RN−1

∧ RN−1, h⊥ ' RN−1 such that [h⊥, h‖] ⊆ h⊥ and [h⊥, h⊥] = h‖. Note these
Lie bracket relations correspond to the geometrical properties (39) of a Riemannian parallel frame [3]. There are two
main differences in the general case. Firstly, the operators H,J have an additional term arising from the Lie bracket
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structure [h⊥, h⊥] ∩ h⊥ 6= 0 as permitted by the more general algebraic notion of a parallel frame in Definition 3.3
and Theorem 3.5. Secondly, these operators are formulated here in a manifestly H∗

‖
-invariant fashion, using just the

intrinsic Lie bracket on h = h‖ ⊕ h⊥, as opposed to a more cumbersome RN−1-component form used in [30].

4.3. Proof of cosymplectic property for H

A linear operator H that acts on h⊥-valued functions in the x-jet space J∞ of the flow variable u is a Hamiltonian
cosymplectic operator [29,15] iff its associated Poison bracket (80) is skew-symmetric and obeys the Jacobi identity.

Skew-symmetry (81) is equivalent toH being skew-adjoint with respect to the natural inner product
∫
〈 f1, f2〉dx on

h⊥-valued functions f on J∞ induced by the Cartan–Killing inner product on h⊥. This condition can be formulated
in a pointwise manner on J∞ as follows: H is skew-adjoint iff

〈 f,H( f )〉 ≡ 0 modulo a total x-derivative (87)

(namely, 〈 f,H( f )〉 = DxΥ for some scalar function Υ ).

Proposition 4.7. The linear operator H = Dx + [u, ·]⊥ − [u, D−1
x [u, ·]‖] in Theorem 4.5 is skew-adjoint.

Proof. The l.h.s. of (87) is given by

〈 f, Dx f + [u, f ]⊥ − [u, D−1
x [u, f ]‖]〉 ≡ 〈 f, [u, f ]〉 − 〈 f, [u, D−1

x [u, f ]‖]〉 (88)

since 〈 f, Dx f 〉 = −
1
2 Dx | f |

2. The remaining two terms can be simplified by means of the identities

〈A, [B,C⊥]〉 = cyclic, 〈A, [B,C‖]〉 = 〈C‖, [A, B]〉, (89)

for functions A, B with values in h⊥ and C in h. Thus

〈 f, [u, f ]〉 = −〈u, [ f, f ]〉 = 0 (90)

and

〈 f, [u, A( f )]〉 = −〈A( f ), [u, f ]‖〉 =
1
2

Dx |A( f )|2 ≡ 0 (91)

where A( f ) = D−1
x [u, f ]‖. Hence the l.h.s. of (87) reduces to a total x-derivative, which completes the proof. �

For a skew-adjoint operator H, the Jacobi property (82) is well known to be equivalent to the vanishing of the
Schouten bracket of H with itself [15]. The simplest approach to verifying if an operator has vanishing Schouten
bracket is the calculus of multi-vectors developed in [29] which will be adapted to the h⊥-valued setting here.

First, on x-jet space J∞, introduce a h⊥-valued vertical uni-vector θ which is dual to du regarded as a h⊥-valued
1-form, in the sense that −〈θ, du〉 = 1 where the pairing denotes the usual contraction between vectors and 1-
forms, combined with their Cartan–Killing inner product on h. Then x-derivatives of θ are introduced similarly as
duals to dux = Dx du, duxx = D2

x du, etc. via θx = Dxθ , θxx = D2
xθ , etc. such that −〈θkx , dulx 〉 = δkl (with

k, l = 0, 1, 2, . . .). Formal sums of antisymmetric tensor products of these vertical uni-vectors will define vertical
multi-vectors, for instance θ ∧ θ and θ ∧ θ ∧ θ with respective values in Λ2

h⊥
and Λ3

h⊥
. More particularly, a combined

wedge product and Lie bracket of θ with itself yields a h-valued vertical bi-vector

[θ, θ] = [θ, θ]⊥ + [θ, θ]‖ (92)

while the vertical tri-vector

[[θ, θ], θ] = 0 (93)

vanishes due to the Jacobi identity on h.
It is useful to let the basic uni-vector θ have the formal action of a vector field on h⊥-valued functions

f (x, u, ux , . . .) on J∞,

δθ f :=

∑
0≤k

θkx∂ f/∂ukx . (94)
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Likewise, let θ act on differential operators D =
∑

0≤k ak Dk
x by a formal Lie derivative

δθD :=

∑
0≤k

(δθak)D
k
x (95)

in terms of coefficients ak(x, u, ux , . . .) given by functions on J∞. In particular, δθ Dx = 0. Finally, the action of θ
can be naturally extended first to vertical uni-vectors θ via defining

δθθ := 0 (96)

so δθθkx = 0, and then to vertical multi-vectors by letting δθ act as a derivation.
In this formalism the Schouten bracket of H with itself vanishes if and only if

∫
〈θ ∧ δH(θ)H(θ)〉dx = 0 where

〈·∧·〉 denotes the Cartan–Killing inner product combined with the wedge product of h⊥-valued 1-forms on J∞. Note,
in particular, 〈θ ∧ θ〉 = 0. An equivalent pointwise formulation is that 〈θ ∧ δH(θ)H(θ)〉 = DxΥ (for some scalar
function Υ ) or simply

〈θ ∧ δH(θ)H(θ)〉 ≡ 0 modulo a total x-derivative. (97)

This condition is equivalent to the Jacobi identity (82) holding for the Poisson bracket {·, ·}H.

Proposition 4.8. The linear operator H = Dx + [u, ·]⊥ − [u, D−1
x [u, ·]‖] in Theorem 4.5 has vanishing Schouten

bracket and hence is cosymplectic.
The following multi-vector identities will be used in the proof:

[A(θ), B(θ)] = [B(θ), A(θ)], (98)

[A(θ), [B(θ),C(θ)]] + cyclic = 0, (99)

and

〈A(θ) ∧ B(θ)〉 = −〈B(θ) ∧ A(θ)〉, (100)

〈A(θ) ∧ [B(θ),C(θ)]〉 = cyclic, (101)

for linear operators A, B,C from h⊥ into h; also,

〈A(θ) ∧ [u, ·]〉 = −〈u, [A(θ), ·]〉 = −〈[u, A(θ)] ∧ ·〉, (102)

[[u, B(θ)], A(θ)] + [[u, A(θ)], B(θ)] = [u, [B(θ), A(θ)]], (103)

and in particular

[[u, A(θ)], A(θ)] =
1
2
[u, [A(θ), A(θ)]]. (104)

Proof. Consider

δH(θ)H(θ) = [H(θ), θ]⊥ − [H(θ), D−1
x [u, θ]‖] − [u, D−1

x [H(θ), θ]‖] (105)

which expands out to a h⊥-valued cubic polynomial in u. There is a single inhomogeneous term, [Dxθ, θ]⊥. This
yields in the l.h.s of (97):

〈θ ∧ [Dxθ, θ]〉 =
1
3

Dx 〈θ ∧ [θ, θ]〉 ≡ 0 (106)

by use of (101).
Next the linear terms in (105) are given by

−[Dxθ, D−1
x [u, θ]‖] − [u, D−1

x [Dxθ, θ]‖] + [[u, θ]⊥, θ]⊥. (107)

In the l.h.s of (97) the first term of (107) yields:

−〈θ ∧ [Dxθ, D−1
x [u, θ]‖]〉 = −

1
2
〈D−1

x [u, θ]‖ ∧ Dx [θ, θ]〉 ≡
1
2
〈[u, θ]‖ ∧ [θ, θ]〉 (108)
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from (98) and (101). Similarly the middle term of (107) simplifies:

−〈θ ∧ [u, D−1
x [Dxθ, θ]‖]〉 = 〈u, [θ, D−1

x [Dxθ, θ]‖]〉 = −
1
2
〈u, [θ, [θ, θ]⊥]〉 = −

1
2
〈[u, θ] ∧ [θ, θ]⊥〉 (109)

from (102), (92) and (93). The last term of (107) directly gives:

〈θ ∧ [[u, θ]⊥, θ]〉 = 〈[u, θ]⊥ ∧ [θ, θ]〉. (110)

Hence the linear terms in the l.h.s of (97) combine into

≡
1
2
〈[u, θ]‖ ∧ [θ, θ]〉 +

1
2
〈[u, θ]⊥ ∧ [θ, θ]〉 =

1
2
〈[u, θ] ∧ [θ, θ]〉 =

1
2
〈u, [θ, [θ, θ]]〉 = 0 (111)

by (93) and (102).
The quadratic terms in (105) are given by

−[[u, θ]⊥, D−1
x [u, θ]‖] − [[u, D−1

x [u, θ]‖], θ]⊥ − [u, D−1
x [[u, θ]⊥, θ]‖]. (112)

Write A(θ) = D−1
x [u, θ]‖ and combine the first and second terms in (112) by the Jacobi relation (99) to get

[[A(θ), θ], u]⊥. This yields in the l.h.s of (97):

〈θ ∧ [[A(θ), θ], u]〉 = 〈A(θ) ∧ [[u, θ], θ]〉 (113)

from (101) and (102). For the third term in (112), we use (102) to simplify the l.h.s of (97):

−〈θ ∧ [u, D−1
x [[u, θ]⊥, θ]‖]〉 = 〈[u, θ] ∧ D−1

x [[u, θ]⊥, θ]‖〉 ≡ −〈A(θ) ∧ [[u, θ]⊥, θ]〉. (114)

This term now combines with the previous one, giving

≡ 〈A(θ) ∧ [[u, θ]‖, θ]〉 = 〈A(θ) ∧ [Dx A(θ), θ]〉 =
1
2
〈θ ∧ Dx [A(θ), A(θ)]⊥〉 (115)

from (101). But the Lie bracket relation (66) implies [A(θ), A(θ)]⊥ vanishes and hence so does the combined
quadratic term (115) in the l.h.s of (97).

Finally, there are two cubic terms in (105):

[[u, A(θ)], A(θ)] + [u, D−1
x [[u, A(θ)], θ]‖] (116)

where A(θ) = D−1
x [u, θ]‖ again. The second term of (116) simplifies in the l.h.s of (97):

〈θ ∧ [u, D−1
x [[u, A(θ)], θ]‖]〉 = −〈[u, θ] ∧ D−1

x [[u, A(θ)], θ]‖〉

≡ 〈A(θ) ∧ [[u, A(θ)], θ]〉 = 〈θ ∧ [A(θ), [u, A(θ)]]〉 (117)

by (101) and (102). This term combines with the first term of (116) in the l.h.s of (97):

2〈θ ∧ [[u, A(θ)], A(θ)]〉 = 〈θ ∧ [u, [A(θ), A(θ)]‖]〉 = −〈Dx A(θ) ∧ [A(θ), A(θ)]〉

≡ −
1
3

Dx 〈A(θ) ∧ [A(θ), A(θ)]〉 ≡ 0 (118)

by means of (104), (101) and (102), in addition to [A(θ), A(θ)]⊥ = 0.
Thus the l.h.s of (97) vanishes modulo total x-derivatives, which completes the proof. �

4.4. Proof of symplectic property for J

A linear operator J that acts on h⊥-valued functions in the x-jet space J∞ of the flow variable u is a symplectic
operator [15] iff the associated bilinear form (84) is skew and closed, namely ω(X, X) = 0 and dω(X, Y, Z) =

δXω(Y, Z)+ cyclic = 0 for all vector fields X, Y, Z on J∞.
The conditions on ω have a straightforward pointwise formulation on J∞ in terms of

ωJ (h
⊥

1 , h⊥

2 ) := −〈h⊥

1 ,J (h
⊥

2 )〉 (119)
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where h⊥ denotes a h⊥-valued function. It will be convenient to work equivalently with m ⊥-valued functions
h⊥ = ad(ex )

−1h⊥ along with the operator K|m ⊥
= −ad(ex )J ad(ex ) as follows:

ωJ (h
⊥

1 , h⊥

2 ) = 〈ad(ex )h⊥1, ad(ex )
−1K(h⊥2)〉 = −〈h⊥1,K(h⊥2)〉. (120)

Note, here, ad(ex ) is skew-adjoint with respect to the Cartan–Killing inner product on h⊥ ⊕ m ⊥ as a consequence of
the elementary identity

〈ad(ex )A, B〉 = 〈ex , [A, B]〉 = −〈A, ad(ex )B〉 (121)

for functions A, B with values in h⊥ ⊕ m ⊥.
To proceed, skew-symmetry of ω will hold iff ωJ is skew, which is clearly equivalent to K being a skew-adjoint

operator:

〈 f,K( f )〉 ≡ 0 modulo a total x-derivative (122)

for all m ⊥-valued functions f on J∞. This condition is formally identical to the skew-adjoint property established
earlier for the operator H = K|h⊥

in Proposition 4.7, where, recall, K is the operator given in (74). As a result, the
isomorphism m ⊥ ' h⊥ provided by ad(ex ) implies that the steps in the proof of Proposition 4.7 carry through with
the function f now being m ⊥-valued instead of h⊥-valued.

Proposition 4.9. The linear operator J = −ad(ex )
−1(Dx + [u, ·]⊥ − [u, D−1

x [u, ·]‖]) ad(ex )
−1 in Theorem 4.5 is

skew-adjoint and hence the bilinear form ω(·, ·) =
∫
ωJ (·, ·)dx is skew-symmetric.

Next, for a skew-adjoint operator J , the closure property dω = 0 is equivalent to having ωJ satisfy
δh⊥

1
ωJ (h⊥

2 , h⊥

3 )+ cyclic = DxΥ for some scalar function Υ . This condition will hold iff:

〈h⊥3, δh⊥

1
K(h⊥2)〉 + cyclic = 0 (123)

for all m ⊥-valued functions h⊥i , with h⊥

i = ad(ex )h⊥i (i = 1, 2, 3).
Hereafter it will be useful to let

(·, ·) := [ad(ex )·, ·] (124)

which satisfies the following identities:

〈A, (B,C)〉 = −〈C, (B, A)〉 (125)

and also

(A, B)‖ = (B, A)‖, (126)

(A, B)⊥ − (B, A)⊥ = ad(ex )[A, B], (127)

〈A, (B,C)⊥〉 + cyclic = 0, (128)

for functions A, B,C with values in m ⊥. Note the latter two identities are readily established from the property that
ad(ex ) acts as a derivation on [·, ·] in m ⊥ and annihilates m ‖.

Proposition 4.10. The skew bilinear form ω(·, ·) =
∫
ωJ (·, ·)dx is closed and hence the linear operator J =

−ad(ex )
−1(Dx + [u, ·]⊥ − [u, D−1

x [u, ·]‖])ad(ex )
−1 in Theorem 4.5 is symplectic.

Proof. Consider, from (74) and (124),

δh⊥

1
K(h⊥2) = [h⊥

1 , h⊥2]⊥ − [h⊥

1 , D−1
x [u, h⊥2]‖] − [u, D−1

x [h⊥

1 , h⊥2]‖]

= (h⊥1, h⊥2)⊥ − (h⊥1, D−1
x [u, h⊥2]‖)− [u, D−1

x (h⊥1, h⊥2)‖] (129)

which is a m ⊥-valued linear polynomial in u. The inhomogeneous term yields in the l.h.s of (123):

〈h⊥3, (h⊥1, h⊥2)⊥〉 + cyclic = 0 (130)
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from (128). Write A(h⊥) = D−1
x [u, h⊥]‖. Then in the l.h.s of (123) the middle term in (129) is given by:

−〈h⊥3, (h⊥1, A(h⊥2))〉 + cyclic = 〈A(h⊥2), (h⊥1, h⊥3)‖〉 + cyclic (131)

from (125). For the last term in (129), the l.h.s of (123) simplifies:

−〈h⊥3, [u, D−1
x (h⊥1, h⊥2)‖]〉 + cyclic = 〈[u, h⊥3], D−1

x (h⊥1, h⊥2)‖〉 + cyclic

≡ −〈A(h⊥3), (h⊥1, h⊥2)〉 + cyclic = −〈A(h⊥2), (h⊥3, h⊥1)〉 + cyclic (132)

by cyclic rearrangement. Note A(h⊥)⊥ = 0. Hence, from (126), the terms (131) and (132) cancel,

≡ 〈A(h⊥2), (h⊥1, h⊥3)‖ − (h⊥3, h⊥1)‖〉 = 0 (133)

which completes the proof. �

4.5. Proof of compatibility of H,J

Hamiltonian cosymplectic and symplectic operators H,J are said to be compatible (i.e. comprise a Hamiltonian
pair) if every linear combination c1H + c2J −1 is a Hamiltonian operator. Equivalently [29,15], compatibility holds
whenever H and J −1 have a vanishing Schouten bracket.

The latter condition can be formulated using the same calculus of vertical multi-vectors as employed in the proof
of Proposition 4.8:

〈θ ∧ (δH(θ)J −1(θ)+ δJ −1(θ)H(θ))〉 ≡ 0 modulo a total x − derivative (134)

where θ denotes the vertical uni-vector dual to du in the x-jet space J∞ of u. It is possible to simplify the l.h.s. of
(134) by noting δH(θ)J −1

= −J −1(δH(θ)J )J −1 and then replacing θ by J (θ) followed by using the skew-adjoint
property of J to get

〈θ ∧ δH(J (θ))J (θ)+ J (θ) ∧ (δθH)J (θ)〉 ≡ 0. (135)

Now, as the uni-vector defined by J (θ) obviously enjoys the same formal properties as θ itself, this establishes that
(135) is equivalent to condition (134).

Lemma 4.11. The Schouten bracket of H,J vanishes iff (135) holds.

For verifying if H,J satisfy (135), the earlier multi-vector identities (98)–(102) will be useful, in addition to the
following identities:

〈A(θ), (B(θ),C(θ))⊥〉 + cyclic = 0, (136)

(A(θ), B(θ))‖ = −(B(θ), A(θ))‖, (137)

and in particular

(A(θ), A(θ))‖ = 0, (138)

for linear operators A, B,C from h⊥ into h. Here, (·, ·) = [ad(ex )·, ·] as before.

Theorem 4.12. The cosymplectic and symplectic operators H,J in Theorem 4.5 have vanishing Schouten bracket
and hence comprise a Hamiltonian pair.

Proof. It will be useful to introduce the uni-vectors θ̃ := ad(ex )
−1θ and θ

˜

:= ad(ex )
−1θ̃ , with values in m ⊥ and h⊥,

having the same formal properties as the h⊥-valued uni-vector θ . (In particular, θ = ad(ex )θ̃ = ad(ex )
2 θ

˜

.) To begin,

note 〈θ ∧ δH(J (θ))J (θ)〉 = 〈θ̃ ∧ δH(J (θ))K(θ̃)〉 due to ad(ex ) being skew-adjoint with respect to the Cartan–Killing
inner product. Now consider

δH(J (θ))K(θ̃) = −[H(J (θ)), D−1
x [u, θ̃ ]‖] − [u, D−1

x [H(J (θ)), θ̃ ]‖] + [H(J (θ)), θ̃ ]⊥ (139)
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and write A(θ̃) := D−1
x [u, θ̃ ]‖. In the l.h.s. of (135), the first term in (139) yields

−〈θ̃ ∧ [H(J (θ)), A(θ̃)]〉 = −〈A(θ̃) ∧ [θ̃ ,H(J (θ))]〉 (140)

and the second term in (139) simplifies:

−〈θ̃ ∧ [u, D−1
x [H(J (θ)), θ̃ ]‖]〉 ≡ −〈A(θ̃) ∧ [θ̃ ,H(J (θ))]〉. (141)

Hence these two terms add to give, from (73),

−2〈A(θ̃) ∧ [θ̃ , DxJ (θ)]〉 − 2〈A(θ̃) ∧ [[u,J (θ)]⊥, θ̃ ]〉 + 2〈A(θ̃) ∧ [[u, B(θ)], θ̃ ]〉 (142)

where B(θ̃) := D−1
x [u,J (θ)]‖. Next, in the l.h.s. of (135), the third term in (139) expands out to yield

〈θ̃ ∧ [H(J (θ)), θ̃ ]〉 = 〈[θ̃ , θ̃ ] ∧ DxJ (θ)〉 + 〈[θ̃ , θ̃ ] ∧ [u,J (θ)]⊥〉 − 〈[θ̃ , θ̃ ] ∧ [u, B(θ)]〉. (143)

Note the six terms given by (142) and (143) are linear in J (θ). Six similar terms come from 〈J (θ) ∧ (δθH)J (θ)〉 as
follows. First consider

(δθH)J (θ) = −[θ, D−1
x [u,J (θ)]‖] − [u, D−1

x [θ,J (θ)]‖] + [θ,J (θ)]⊥. (144)

In the l.h.s. of (135), the second term in (144) simplifies via (101)

−〈J (θ) ∧ [u, D−1
x [θ,J (θ)]‖]〉 ≡ −〈B(θ) ∧ [θ,J (θ)]〉 (145)

which then adds with the first term in (144), yielding by (73) and (137),

−2〈B(θ) ∧ [θ,J (θ)]〉 = −2〈B(θ) ∧ (θ̃ ,J (θ))‖〉 = −2〈B(θ) ∧ [K(θ̃), θ̃ ]〉. (146)

This expands out to give three terms: first

−2〈B(θ) ∧ [Dx θ̃ , θ̃ ]〉 ≡ 〈[u,J (θ)]‖ ∧ [θ̃ , θ̃ ]〉 (147)

by (98); next

−2〈B(θ) ∧ [[u, θ̃ ]⊥, θ̃ ]〉 = −2〈B(θ) ∧ [[u, θ̃ ], θ̃ ]‖〉 = −〈B(θ) ∧ [u, [θ̃ , θ̃ ]]〉 (148)

by [[u, θ]‖, θ]‖ = 0 from the Lie bracket relations (67) followed by (104); third

2〈B(θ) ∧ [[u, A(θ̃)], θ̃ ]〉. (149)

The last term remaining in (144) can be rearranged in the l.h.s. of (135):

〈J (θ) ∧ [θ,J (θ)]〉 = 〈J (θ) ∧ (θ̃ ,J (θ))⊥〉

= −〈θ̃ ∧ (J (θ),J (θ))⊥〉 − 〈J (θ) ∧ (J (θ), θ̃ )⊥〉 = 2〈J (θ) ∧ [θ̃ ,K(θ̃)]〉 (150)

via (101) and (136). This term expands out to give three terms:

〈J (θ) ∧ Dx [θ̃ , θ̃ ]〉 − 2〈J (θ) ∧ [θ̃ , [u, A(θ̃)]]〉 + 2〈J (θ) ∧ [θ̃ , [u, θ̃ ]⊥]〉 (151)

via (98).
Now the term (148) cancels the last term in (143) by (102), while the first terms in Eqs. (143) and (151) reduce to

Dx 〈J (θ) ∧ [θ̃ , θ̃ ]〉 ≡ 0.
The remaining terms in (143) and (151), along with the three terms in (142) and the two terms given by (147)

and (149), constitute a cubic polynomial in u with coefficients linear in J (θ). The linear u-terms in this polynomial
consist of:

2〈J (θ) ∧ [θ̃ , [u, θ̃ ]⊥]〉 = 〈J (θ) ∧ [u, [θ̃ , θ̃ ]]〉 − 2〈Dx A(θ̃) ∧ [θ̃ ,J (θ)]〉 (152)

via (101) and (104); plus

〈[θ̃ , θ̃ ] ∧ [u,J (θ)]〉 (153)
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and

−2〈A(θ̃) ∧ [θ̃ , DxJ (θ)]〉. (154)

When combined, these four terms reduce to

≡ 2〈A(θ̃) ∧ [Dx θ̃ ,J (θ)]〉. (155)

Next, the quadratic u-terms in the polynomial yield

−2〈J (θ) ∧ [θ̃ , [u, A(θ̃)]]〉 − 2〈A(θ̃) ∧ [θ̃ , [u,J (θ)]⊥]〉 = −2〈θ̃ ∧ [u, [A(θ̃),J (θ)]]〉 (156)

via (101) and (103), with [θ̃ , [u,J (θ)]‖]‖ = 0 by the Lie bracket relation (67). Similarly, the cubic terms combine to
produce

2〈[[u, A(θ̃)], θ] ∧ B(θ̃)〉 + 2〈A(θ̃) ∧ [[u, B(θ̃)], θ̃ ]〉 = 2〈θ̃ ∧ [u, [A(θ̃), B(θ)]]〉

= −2〈Dx A(θ̃) ∧ [A(θ̃), B(θ̃)]〉 ≡ 〈[A(θ̃), A(θ̃)] ∧ [u,J (θ)]〉 (157)

where the middle step uses [A(θ̃), B(θ̃)]⊥ = 0 due to the Lie bracket relations (66).
To proceed, we make use of the identity

J (θ) = −ad(ex )
−1K(θ̃) = −Dx θ

˜

− C(θ̃)+ [ũ, A(θ̃)] (158)

with C(θ̃) := ad(ex )
−1

[u, θ̃ ]⊥ and ũ := ad(ex )
−1u where the last term in (158) arises from [u, A(θ̃)] =

ad(ex )[ũ, A(θ̃)] as ad(ex ) annihilates A(θ̃). The terms (155)–(157) expand out to become a quintic polynomial in
u as follows. There is a single linear term, coming from (155):

−2〈A(θ̃) ∧ [Dx θ̃ , Dx θ
˜

]〉 = −2〈A(θ̃) ∧ (Dx θ
˜

, Dx θ
˜

)‖〉 = 0 (159)

by (138). Next, one quadratic term comes from (155):

−2〈A(θ̃) ∧ [Dx θ̃ ,C(θ̃)]〉 = −2〈A(θ̃) ∧ (Dx θ
˜

,C(θ̃))‖〉 = 2〈A(θ̃) ∧ [[u, θ̃ ]⊥, Dx θ
˜

]〉

= 2〈Dx θ
˜

∧[A(θ̃), [u, θ̃ ]]〉 (160)

via (101) and (138) combined with [A(θ̃), [u, θ̃ ]‖]⊥ = 0 by the Lie bracket relations (66). This term (160) now cancels
the quadratic term given by (156),

2〈θ̃ ∧ [u, [A(θ̃), Dx θ
˜

]]〉 = −2〈[u, θ̃ ] ∧ [A(θ̃), Dx θ
˜

]〉 (161)

through (101). We then have only cubic and higher degree terms remaining to consider. One cubic term comes from
(156):

2〈θ̃ ∧ [u, [A(θ̃),C(θ̃)]]〉 = −2〈A(θ̃) ∧ [[u, θ̃ ],C(θ̃)]〉 = −2〈A(θ̃) ∧ (C(θ̃),C(θ̃))‖〉 = 0 (162)

by (138), with [[u, θ̃ ]‖,C(θ̃)]‖ = 0 by the Lie bracket relations (67). Another cubic term arises from (155):

2〈A(θ̃) ∧ [Dx θ̃ , [ũ, A(θ̃)]]〉 = 〈Dx θ̃ ∧ [ũ, [A(θ̃), A(θ̃)]]〉 = 〈[A(θ̃), A(θ̃)] ∧ (Dx θ
˜

, ũ)‖〉 (163)

via (101) and (104). A similar cubic term is given by (157):

〈[A(θ̃), A(θ̃)] ∧ [u, Dx θ
˜

]〉 = −〈[A(θ̃), A(θ̃)] ∧ (ũ, Dx θ
˜

)‖〉. (164)

Then (163) and (164) cancel by (126). There is a similar cancellation of quartic terms coming from (156) and (157):

−2〈θ̃ ∧ [u, [A(θ̃), [ũ, A(θ̃)]]]〉 = 〈[A(θ̃), A(θ̃)] ∧ [[u, θ̃ ]⊥, ũ]〉 = 〈[A(θ̃), A(θ̃)] ∧ (C(θ̃), ũ)‖〉 (165)
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and

−〈[A(θ̃), A(θ̃)] ∧ [u,C(θ̃)]〉 = −〈[A(θ̃), A(θ̃)] ∧ (ũ,C(θ̃))‖〉. (166)

As a result, the only term remaining is quintic, which comes from (157):

〈[A(θ̃), A(θ̃)] ∧ [u, [ũ, A(θ̃)]]〉. (167)

We now employ the Jacobi identity combined with the identity

[u, [ũ, A(θ̃)]]‖ = (ũ, [ũ, A(θ̃)])‖ = ([ũ, A(θ̃)], ũ)‖ = [[u, A(θ̃)], ũ]‖ (168)

to get

[u, [ũ, A(θ̃)]]‖ =
1
2
[[u, ũ], A(θ̃)]‖. (169)

Hence (167) simplifies to

1
2
〈[A(θ̃), A(θ̃)] ∧ [[u, ũ], A(θ̃)]〉 =

1
2
〈[u, ũ] ∧ [[A(θ̃), A(θ̃)], A(θ̃)]〉 = 0 (170)

by (99). Consequently, all terms in the l.h.s. of (135) have been shown to vanish modulo a total x-derivative, thereby
completing the proof.

5. Bi-Hamiltonian hierarchies of non-stretching curve flows and soliton equations

In any Riemannian symmetric space M = G/H , the frame structure equations of non-stretching curve flows
γ (t, x) geometrically encode a group-invariant bi-Hamiltonian structure for the induced flow on the components of
the principal normal vector along the curve. This structure looks simplest as stated in Theorem 4.5 using an H -parallel
moving frame formulation (cf. Definition 3.3) expressed in terms of a m -valued linear coframe e and its associated
h-valued linear connection ω, obeying properties (i) to (iv) summarized in Lemma 4.1. Such a framing of γ (t, x)
arises directly from the g-valued zero-curvature Cartan connection g

ω = e + ω in the Klein geometry associated
with G viewed as an H -bundle over M , where g = m ⊕ h is the corresponding Lie algebra decomposition of G
and m 'G Tx M . In particular, e and ω provide a soldering of the Klein geometry of G/H onto the Riemannian
geometry of M , such that the frame structure equations coincide with the Cartan equations for torsion and curvature
(cf Theorem 2.3 and Corollary 2.4) of the Riemannian connection ∇t ,∇x on the two-dimensional surface of the flow
in M .

The bi-Hamiltonian structure consists of compatible Hamiltonian (cosymplectic and symplectic) operators H and
J , which yield a (hereditary) recursion operator

R = HJ = −(Kad(ex )
−1)2

= −(ad(ex )
−1 Dx + [u, ad(ex )

−1
· ]⊥ − [u, D−1

x [u, ad(ex )
−1

· ]‖])
2 (171)

with respect to the flow variable u. Due to the H -parallel property of e and ω, ex = ecγx is a fixed unit vector in m
representing the moving frame components of the tangent vector γx along the curve, while u = ωx = ωcγx is related
to the moving frame components of the principal normal vector ∇xγx along the curve through the corresponding
m ⊥-valued expression [u, ex ] = −ad(ex )u = ec∇xγx . Note ad(ex )

−1 gives an isomorphism between the perp spaces
h⊥ and m ⊥ of the centralizer subspaces h‖ and m ‖ with respect to ex in m ⊕ h = g, with ad(ex )h‖ = ad(ex )m ‖ = 0.
Hence the linear operator Kad(ex )

−1 maps h⊥-valued functions into m ⊥-valued functions, and vice versa. Thus the
adjoint of the recursion operator is given by

R∗
= JH = −(ad(ex )

−1K)2

= −(ad(ex )
−1 Dx + ad(ex )

−1
[u, · ]⊥ − ad(ex )

−1
[u, D−1

x [u, · ]‖])
2. (172)

On the x-jet space J∞
= (x, u, ux , uxx , . . .) of the flow variable u, the x-translation vector field ∂/∂x is an obvious

symmetry of the operators H,J and hence of the recursion operator R. As a consequence, from general results due
to Magri [23,24] on Hamiltonian recursion operators [29], R will generate a hierarchy of commuting Hamiltonian
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vector fields with respect to the Poisson bracket, where the hierarchy starts with the evolutionary form of the vector
field ∂/∂x . Moreover, an associated hierarchy of involutive covector fields arises from the canonical pairing provided
by the symplectic 2-form.

Theorem 5.1. A commuting hierarchy of Hamiltonian vector fields h⊥

(n) · ∂/∂u is given by the h⊥-valued functions

h⊥

(n) := Rn(ux ), (n = 0, 1, 2, . . .) (173)

satisfying the Poisson bracket relation

δh⊥(n)· = {·,H(n)}H (174)

for some Hamiltonian functionals H(n) =
∫

H (n)(x, u, ux , . . .), with respect to the Hamiltonian operator H. The
variational derivative of each such functional yields a dual vector field $⊥

(n) · du given by the h⊥-valued functions

$⊥

(n) := δH (n)/δu = R∗n
(u), (n = 0, 1, 2, . . .) (175)

forming a hierarchy of involutive variational covector fields. In particular, at the bottom of these hierarchies,
H (0)

= −
1
2 〈u, u〉 is the Hamiltonian for the vector field given by h⊥

(0) = ux corresponding to the generator of

x-translations in evolutionary form, whose dual covector field is given by $⊥

(0) = u.

Corollary 5.2. These hierarchies are related by the Hamiltonian operators

$⊥

(n+1) = J (h⊥

(n)), h⊥

(n) = H($⊥

(n)) (176)

with 〈$⊥

(n), h⊥

(n)〉 ≡ 0 modulo a total x-derivative, since H,J are skew-adjoint.

The form of these operators under a scaling of the variables x and u shows that both hierarchies possess the mKdV
scaling symmetry x → λx , u → λ−1u. Thereby h⊥

(n) and H (n) each have scaling weight 2 + 2n, and $⊥

(n) hence has

scaling weight 1 + 2n. From variational scaling methods in [2], it follows that H (n) can be expressed explicitly in
terms of h⊥

(n) or $⊥

(n):

(1 + 2n)H (n)
= −D−1

x 〈u, h⊥

(n)〉 = −D−1
x 〈u,H($⊥

(n))〉. (177)

The derivation of this formula is fairly simple. Let δsu = −xux − u = −Dx (xu) and δs H = −x Dx H − pH be
the evolutionary form of the mKdV scaling symmetry generator on u and H(x, u, ux , . . .), with respective scaling
weights 1 and p 6= 1. Then we have

δs H ≡ (1 − p)H (178)

modulo a total x-derivative. On the other hand,

δs H ≡ −〈δsu, δH/δu〉 = 〈Dx (xu),$⊥
〉 ≡ −x〈u, Dx$

⊥
〉 = −x〈u,H($⊥)〉, (179)

where the last line uses the identity 〈u, [u, A($⊥)]〉 = 〈A($⊥), [u, u]〉 = 0 holding for any linear operator A.
Finally, the identity 〈u,H($⊥)〉 = Dx D−1

x 〈u,H($⊥)〉 yields δs H ≡ D−1
x 〈u,H($⊥)〉 modulo a total x-derivative,

from which we obtain H = (1 − p)−1 D−1
x 〈u,H($⊥)〉.

5.1. Group-invariant bi-Hamiltonian soliton equations

The entire hierarchy of vector fields (173) has two compatible Hamiltonian structures H and J −1:

h⊥

(n) = H(δH (n)/δu) = J −1(δH (n+1)/δu), (n = 0, 1, 2, . . .). (180)

The operator E := RH provides an alternate Hamiltonian structure

h⊥

(n) = E(δH (n−1)/δu) (for n > 0), (181)
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with H and E comprising an explicit Hamiltonian pair (of cosymplectic operators). As a main result, this bi-
Hamiltonian structure (180) produces a hierarchy of bi-Hamiltonian flows on u as given by linear combinations
h⊥

= h⊥

(n+1) + h⊥

(n) of the vector fields (173) according to the form of the flow equation (72).

Theorem 5.3. The flow equation (72) on u yields a hierarchy of bi-Hamiltonian evolution equations

ut = H(δH (n,1)/δu) = J −1(δH (n+1,1)/δu) (182)

(hereafter called the +1 + n flow) for n = 0, 1, 2, . . . , where H (n,1)
:= H (n)

+ H (n−1). Each of these h⊥-valued
evolution equations is invariant under the equivalence group H∗

‖
⊂ H∗ consisting of rigid (x-independent) linear

transformations Ad(h−1) that preserve ex .

These evolution equations (182) concretely describe group-invariant multicomponent soliton equations when u is
expressed by real-valued components in an expansion with respect to any fixed basis (11) and (22) for the vector
space h⊥ ' m ⊥. These components will naturally divide into irreducible representations uα under the action of the
group H∗

‖
, corresponding to a direct sum decomposition h⊥ = ⊕α hα

⊥
where each subspace hα

⊥
is an eigenspace

of Ad(H∗

‖
). The specific algebraic structure of these eigenspaces (which will depend on the structure of the group

H∗

‖
) defines the algebraic content of the variables uα: e.g. scalars, real vectors, complex vectors or vector pairs,

scalar–vector pairs, etc. For instance, in the example M = SO(N + 1)/SO(N ) studied in [3], the Lie algebra of H∗

‖

is h‖ = so(N − 1) ⊂ h = so(N ), whence h⊥ ' RN−1
' m ⊥ with this vector space being irreducible (i.e. α = 1).

Thus, in this case, u ∈ RN−1 is algebraically identified as a single real vector variable, and the hierarchy of vector
evolution equations (182) describes SO(N − 1)-invariant multicomponent soliton equations for u = (u1, . . . , uN−1).

In general the bi-Hamiltonian evolution equations (182) can be rewritten in terms of m ⊥-valued variables more
geometrically related to the flow γ (t, x) as follows:

N = ∇xγx ↔ ν := −ad(ex )u (183)

represents the principal normal vector along the curve;

(γt )⊥ ↔ h⊥ := ad(ex )
−1h⊥, (γt )‖ ↔ h‖ (184)

represent the algebraically perpendicular and parallel parts of the flow vector;

∇tγx ↔ $⊥ := −ad(ex )$
⊥

= −ad(ex )($
⊥

+$ ‖) (185)

represents the principal normal vector relative to the flow. These geometrical variables inherit a natural Hamiltonian
cosymplectic and symplectic structure from the results in Theorem 5.1 and Corollary 5.2 expressed with respect to
the flow variable

v := ad(ex )
−1u = X−1(ν), X = −ad(ex )

2 (186)

in the following way. To begin, the induced flow equation takes the form

vt = H̃($⊥)+ h⊥, $⊥ = J̃ (h⊥) (187)

where

H̃ = −ad(ex )
−1K|h⊥

ad(ex )
−1, J̃ = K|m ⊥

(188)

are compatible Hamiltonian cosymplectic and symplectic operators given in terms of

K = Dx + [ad(ex )v, · ]⊥ − [ad(ex )v, D−1
x [ad(ex )v, · ]‖]⊥ (189)

from (74) and (186).

Proposition 5.4. On the x-jet space of geometrical flows with respect to v, h⊥ · ∂/∂v is a Hamiltonian vector field

δh⊥(·) = {·,H}H̃ = −

∫
〈δ(·)/δv, H̃(δH/δv)〉dx (190)
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with respect to the Poisson bracket {·, ·}H̃, and $⊥ · dv is a variational covector field

$⊥ = δF/δv (191)

satisfying the duality relation

($⊥ · dv)c · = ω(· , h⊥ · ∂/∂v)J̃ = −

∫
〈· , J̃ (h⊥)〉dx (192)

with respect to the symplectic 2-form ω(·, ·)J̃ .

Theorem 5.5. There is a bi-Hamiltonian hierarchy of evolution equations on the principal normal components (183)
in a H-parallel moving frame, represented by

vt = H̃(δ H̃ (n,1)/δv) = J̃ −1(δ H̃ (n+1,1)/δv), (n = 0, 1, 2, . . .) (193)

with Hamiltonians H̃ (n,1)
:= H (n)

+ H (n−1) expressed in terms of the m ⊥-valued variables (v, vx , . . .) via (177) and
(186). Correspondingly, the normal flow components

h(n)
⊥

= R̃n(vx ) = H̃($ (n)
⊥
), (n = 0, 1, 2, . . .) (194)

and the principal normal components with respect to the normal flow

$
(n)
⊥

= R̃∗
n
(X (v)) = J̃ (h(n−1)

⊥
), (n = 1, 2, . . .) (195)

represent hierarchies of commuting Hamiltonian vector fields h(n)
⊥

· ∂/∂v and involutive variational covector fields

$
(n)
⊥

· dv generated by the recursion operator

R̃ = H̃J̃ = −(ad(ex )
−1K)2 (196)

and its adjoint

R̃∗ = J̃ H̃ = −(Kad(ex )
−1)2. (197)

This version of the flow equation and its bi-Hamiltonian structure is closest to the notation used in [3,4]. Note the
invariance group of the operators H̃ and J̃ is H∗

‖
⊂ H∗

' Ad(H), and the scaling weights of h(n)
⊥

and $ (n)
⊥

are

2 + 2n and 1 + 2n under the mKdV scaling group x → λx , v → λ−1v.
Through the geometric correspondences (183) and (185), the evolution equations (193) produce a bi-Hamiltonian

hierarchy of non-stretching curve flows in M = G/H . The Hamiltonians are related to the tangential part of the flow
by

g(γt , γx ) ↔ −〈h‖
(n), ex 〉 = (1 + 2n)H (n) (198)

arising from (70) and (177), where

h‖ = D−1
x [v, ad(ex )h⊥]‖, H (n)

= −
1

1 + 2n
D−1

x 〈v,X (h(n)
⊥
)〉. (199)

Remarks.

(1) The infinitesimal invariance group of the hierarchy (193) can be identified with the Lie subalgebra h‖ ⊂ h given
by the centralizer of ex in the Lie algebra of the group H .

(2) The bi-Hamiltonian structure (176) of the hierarchy depends on the constant unit vector ex in m ' g/h determined
by the framing of the curve flow γ (t, x).

(3) Two curve flows encode equivalent (isomorphic) bi-Hamiltonian structures iff ex lies on the same orbit of the
linear isotropy group H∗ in m for both flows, where all such orbits are parametrized by the unit-norm elements
in the Weyl chamber a∗(m ) (cf. Proposition 3.2) contained in a fixed maximal abelian subspace a ⊂ m .

(4) Without loss of generality, in a given equivalence class, a representative ex can be chosen such that the linear map
ad(ex )

2 is diagonal on m ⊥.
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Consequently, every Riemannian symmetric space M = G/H will possess distinct bi-Hamiltonian hierarchies of
non-stretching curve flows characterized by the distinct unit-norm elements in a canonical Weyl chamber a∗(m ) ⊂

m ' g/h 'G Tx M . For the example M = SO(N + 1)/SO(N ), it is well known that every maximal abelian subspace
a ⊂ m = so(N + 1)/so(N ) ' RN has dim a = 1, whence the Weyl chamber a∗(m ) has a single unit-norm element.
As a result, up to equivalence, there is a single bi-Hamiltonian hierarchy of curve flows in M = SO(N + 1)/SO(N ).

The equations of the curve flows on γ (t, x) in a given hierarchy in M = G/H can be readily derived in an explicit
form from the geometric correspondences (183) and (185) by means of Proposition 4.4.

5.2. mKdV flows

The +1 flow on v will now be derived in detail. This will require working out the first higher order Hamiltonian
structures in the hierarchy (194) and (195). At the bottom of the hierarchy, note

h(0)
⊥

= vx , (200)

H (0)
= −〈h(0)

‖
, ex 〉 = −D−1

x 〈v,X (h(0)
⊥
)〉 = −

1
2
|ad(ex )v|

2, (201)

$
(0)
⊥

= δH (0)/δv = X (v), (202)

along with

h(0)
‖

= D−1
x [v, ad(ex )h

(0)
⊥

]‖ = −
1
2
[ad(ex )v, v]‖, (203)

where, recall, X = −ad(ex )
2. The next order in the hierarchy is given by

δH (1)/δv = $
(1)
⊥

= J̃ (h(0)
⊥
) = R̃∗(X (v))

= vxx + [ad(ex )v, vx −
1
2
[ad(ex )v, v]‖], (204)

h(1)
⊥

= H̃($ (1)
⊥
) = R̃(vx )

= X−1(vxxx )+ X−1([ad(ex )v, vx −
1
2
[ad(ex )v, v]‖]⊥)x

− ad(ex )
−1

[ad(ex )v, ad(ex )
−1(vxx + [ad(ex )v, vx ]⊥)

−
1
2
[v, [ad(ex )v, v]‖]] − [v, [v, vx +

1
3
[ad(ex )v, v]⊥]‖], (205)

h(1)
‖

= D−1
x [v, ad(ex )h

(1)
⊥

]‖

= [ad(ex )
−1vxx , v]‖ −

1
2
[ad(ex )

−1vx , vx ]‖ + [ad(ex )
−1v, [ad(ex )v, vx ]]‖

+ [v, [ad(ex )
−1vx , ad(ex )v]]‖ +

1
8
[v, [v, 3[ad(ex )v, v]‖ + [ad(ex )v, v]⊥]]‖

−
1
8
[ad(ex )

−1
[ad(ex )v, v]⊥, [ad(ex )v, v]⊥]‖, (206)

H (1)
= −〈h(1)

‖
, ex 〉 = −D−1

x 〈v,X (h(1)
⊥
)〉

= −
1
2
|vx |

2
+

1
3
〈vx , [ad(ex )v, v]⊥〉 +

1
8
|[ad(ex )v, v]‖|

2. (207)

The derivation of (204) is simple: The local part of J̃ on (200) yields

Dx h(0)
⊥

+ [ad(ex )v, h(0)
⊥

]⊥ = vxx + [ad(ex )v, vx ]⊥, (208)

while the nonlocal part of J̃ applied to (200) reduces to

[ad(ex )v, h(0)
‖

] = −
1
2
[ad(ex )v, [ad(ex )v, v]‖]. (209)
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For the derivation of (205), the following identity will be needed:

[A, (B,C)]‖ − [C, (B, A)]‖ = [B, (A,C)− (C, A)]‖ (210)

which is a consequence of the Jacobi identity on the Lie bracket [·, ·] combined with properties (126) and (127) of the
bracket (·, ·) := [ad(ex )·, ·], holding for m -valued functions A, B,C . To proceed, it is convenient to split up the local
and nonlocal parts of H̃ on (202). The nonlocal part consists of, via (126),

−ad(ex )
−1

[ad(ex )v, D−1
x [ad(ex )v, ad(ex )

−1$
(1)
⊥

]‖] = [v, D−1
x [v,$

(1)
⊥

]‖] (211)

which yields three terms: First,

[v, D−1
x [v, vxx ]‖] = ad(v)[v, vx ]‖ (212)

follows from the elementary identity Dx [v, vx ] = [v, vxx ]. Second,

[v, D−1
x [v, [ad(ex )v, vx ]⊥]‖] = ad(v)D−1

x [v, (v, vx )]‖ =
1
3

ad(v)[v, (v, v)]‖ (213)

is obtained from the Lie bracket relation (67) followed by the identity Dx [v, (v, v)]‖ = 3[v, (v, vx )]‖ arising from
(210). Third,

−
1
2
[v, D−1

x [v, [ad(ex )v, [ad(ex )v, v]‖]]‖] = −
1
4

ad(v)D−1
x [(v, v)‖, (v, v)]‖ = 0 (214)

arises from the same Lie bracket relation combined with (210). Next the local parts of H̃ on (202) are straightforwardly
given by expanding out

X−1(Dx$
(1)
⊥
) (215)

and

−ad(ex )
−1

[ad(ex )v, ad(ex )
−1$

(1)
⊥

]. (216)

Then (205) directly follows by combining these terms with the previous ones.
The derivation of (206) is similar.
Now the +1 flow is given by vt = h(1)

⊥
+ h(0)

⊥
which is equivalent to the evolution equation (187) with h⊥ = h(0)

⊥

and $⊥ = $
(1)
⊥

. This equation can be written out in a fairly short explicit form by means of the brackets [·, ·] and
(·, ·) together with the following linear maps

ad(v)⊥ := [v, ·]⊥, ad⊥(v) := ad(ex )
−1

[ad(ex )v, ·]⊥ (217)

defined on the vector space m ⊥ ' h⊥.

Proposition 5.6.

vt = vx + X−1(vxxx )− X−1
(

1
2
(v, (v, v)‖)− (vx , v)⊥

)
x

− (X−1(vxx ), v)⊥

− ad(v)⊥[v, vx +
1
3
(v, v)⊥]‖ +

1
2

ad⊥(v)[v, (v, v)‖] − ad⊥(v)2vx (218)

is the +1 flow in the hierarchy (193). Up to a convective term, this evolution equation describes a H∗

‖
-invariant mKdV

soliton equation on the m ⊥-valued flow variable v, with two compatible Hamiltonian structures

vt − vx = H̃(δH/δv) = Ẽ(δE/δv) (219)

given by

H =

∫ (
−

1
2
|vx |

2
+

1
3
〈vx , (v, v)〉 +

1
8
|(v, v)‖|

2
)

dx, E = −

∫
〈v,X (v)〉dx (220)
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where

Ẽ := R̃H̃ = −(ad(ex )
−1K)2. (221)

The mKdV flow equation (218) corresponds to a geometrical motion of the curve γ (t, x) obtained through the
identifications (71), (183), (184) arising from m ↔ Tγ M as defined via a H -parallel moving frame along γ (t, x).
Thus, in terms of the principal normal variable (183), the mKdV flow is given by

h⊥ = X−1(νx ) = X−1(Dxν − [u, ν]) = X−1Dxν − X−1
[ν,X−1

[ν, ex ]]

= X−1Dxν − (X−1ad(ν))2ex (222)

and

h‖ =
1
2
[X−1(ν),X−1(ad(ex )ν)]‖ = −

1
2
[X−1(ν), [X−1(ν), ex ]]‖

= −
1
2
(ad(X−1(ν))2ex )‖ (223)

where, recall, ν ↔ N = ∇xγx , Dxν ↔ ∇x N = ∇
2
xγx , ex ↔ X = γx . Also note

X ↔ −adx (X)
2

= −ad(γx )
2

:= Xγ (224)

which represents an invertible linear map on Tγ M . Hence

h⊥ + h‖ = et ↔ X−1
γ ∇x N − (X−1

γ adx (N ))
2 X −

1
2
(adx (X−1

γ N )2 X)‖ = γt (225)

yields the following G-invariant geometrical equation of motion

γt = X−1
γ ∇

2
xγx − (X−1

γ adx (∇xγx ))
2γx −

1
2
(adx (X−1

γ ∇xγx )
2γx )‖, |γx |g = 1 (226)

which will be called a non-stretching mKdV map on M = G/H .

Remark. It is important to emphasize that the mKdV evolution equation (218) and the associated geometric map
equation (226) are bi-Hamiltonian integrable systems that describe multicomponent generalizations of the scalar
mKdV equation. In particular, the evolution equation (218) possesses a hierarchy of higher order commuting
symmetries and higher order conserved densities corresponding to the vector fields (194) and Hamiltonians (199)
for n ≥ 1.

Both the mKdV map (226) and evolution equation (218) greatly simplify in the case when the linear map
X = −ad(ex )

2 is a multiple of the identity,

X = χ id⊥, χ = const (227)

on the vector spaces m ⊥ ' h⊥. From Proposition 2.1, note that (227) implies the Lie bracket relations

[h⊥, h⊥] ⊆ h‖, [m ⊥,m ⊥] ⊆ h‖, [h⊥,m ⊥] ⊆ m ‖, (228)

so consequently

[·, ·]⊥ = (·, ·)⊥ = 0, ad(v)⊥· = ad⊥(v)· = 0, on m ⊥ ' h⊥, (229)

while

ad⊥(v)· = X−1ad(X (v))⊥· = ad(v)·, on m ‖. (230)

This implies, in addition, the identity

(A, (B,C))− (C, (B, A)) = χ [B, [C, A]] (231)
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holding for functions A, B,C with values in m ⊥ ' h⊥.
As a result, when property (227) holds, the mKdV evolution equation (218) can be shown to reduce to

vt − χvx = vxxx −
3
2
(vx , (v, v)) = H̃(δH (1)/δv) = Ẽ(δH (0)/δv) (232)

with a factor χ absorbed into the time derivative, and H (0)
= −

1
2 |v|2, H (1)

= −
1
2 |vx |

2
+

1
8 |(v, v)|2, where the

bi-Hamiltonian structure becomes

H̃ = χ−1 Dx − [v, D−1
x [v, · ]], J̃ = Dx − (v, D−1

x (v, · )), Ẽ = H̃J̃ H̃, (233)

and where the recursion operator is given by

R̃ = H̃J̃ = χ−1
(

D2
x − χ [v, [v, · ]] − (v, (v, · ))+ χ [v, D−1

x [vx , · ]]

− (vx , D−1
x (v, · ))+ [v, D−1

x [v, (v, D−1
x (v, · ))]]

)
(234)

(while the adjoint operator R̃∗ is given by simply switching the brackets
√
χ [·, ·] and (·, ·) in R̃).

The mKdV map equation (226) similarly simplifies to

γt = ∇
2
xγx −

3
2
χ−1adx (∇xγx )

2γx . (235)

These results (232)–(235) encompass the two versions of mKdV vector evolution equations and curve flows in
M = SO(N + 1)/SO(N ), SU (N )/SO(N ) derived in [3], as well as the their complex-valued generalizations
obtained from M = SO(N + 1), SU (N ) in [4]. In particular the scalar mKdV equation and its bi-Hamiltonian
structure is given by (232)–(235) in the case M = S2.

5.3. Remarks on higher order flows

Compared to the mKdV flow (218), the +n flow in the hierarchy (193) for n ≥ 2 is a mKdV evolution equation
of higher order 2n + 1 on the flow variable v. The corresponding curve flows on γ (t, x) in M = G/H are
geometrically described by higher order versions of the non-stretching mKdV map equation (226). All of these
flows and associated geometric map equations are bi-Hamiltonian integrable systems given by a group-invariant
multicomponent generalization of the scalar mKdV soliton hierarchy coming from curve flows in two-dimensional
constant curvature spaces, M = S2 (cf. Section 1). Like in the scalar case, each flow (193) turns out to be an explicit
local polynomial expression in v and its x derivatives, for which a general proof should be possible by applying the
locality results established in [32].

There is a direct differential geometric interpretation of the flows (193), stemming from the geometrical meaning of
the flow variable v = X−1(ecN ) given by the principal normal vector N = ∇xγx along the curve γ in an H -parallel
moving frame. Because of the H -parallel property (cf. Proposition 3.6), the components of v represent differential
covariants of γ relative to the equivalence group H∗

‖
⊂ H∗ of the framing. More precisely, these components are

invariantly determined by the curve γ up the covariant action of the (x-independent) group H∗

‖
in the vector space

m ⊥ ⊂ m 'G Tx M containing v. In contrast, for the case M = S2, there is essentially a unique framing and the
equivalence group H∗

‖
comprises only discrete reflections about the unit tangent vector γx in the tangent plane

Tx M ' R2. In this case v represents a differential invariant of γ , namely the classical curvature invariant. The
results in Theorem 5.5 thus show that, in a generalization from M = S2 to symmetric spaces M = G/H , differential
covariants of the curve γ give a proper setting for a flow variable that geometrically encodes a natural bi-Hamiltonian
structure.

5.4. SG flows

In addition to all the local polynomial flows (193) in the hierarchy given in Theorem 5.5, there is a nonlocal, non-
polynomial flow arising from the kernel of the recursion operator (171) as follows. Consider the vector field h⊥ · ∂/∂v
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defined by

0 = $⊥ = J̃ (h⊥) (236)

which thus gets mapped into R̃(h⊥) = 0 by the recursion operator. This will be called the −1 flow, with h⊥

assigned zero scaling weight under the mKdV scaling group x → λx , v → λ−1v. Geometrically, from relation
(185), $⊥ = ec∇tγx = 0 immediately determines the underlying curve flow on γ to be the G-invariant equation of
motion

∇tγx = 0, |γx |g = 1 (237)

which is recognized as being a non-stretching wave map on M = G/H , with t and x interpreted as light cone
coordinates for the curve flow.

The corresponding evolution equation (187) induced on the flow variable v is given by h⊥ = h(−1)
⊥

such that

$ = J̃ (h(−1)
⊥

) = 0, so hence v satisfies the −1 flow equation

vt = h(−1)
⊥

, Dx h(−1)
⊥

+ [ad(ex )v, h(−1)
⊥

− D−1
x [ad(ex )v, h(−1)

⊥
]‖]⊥ = 0 (238)

describing a nonlocal flow. The structure of this equation looks simpler if we work in terms of the flow-vector variable
h⊥ + h‖ = et = ecγt , and the x-connection variable u = ad(ex )v = ωx = ωcγx , which obey the frame structure
equations (68)–(70) in Lemma 4.2. Write

h(−1)
:= h(−1)

⊥
+ h(−1)

‖
(239)

and note

$⊥
+$ ‖

= ωt = ωcγt = 0 (240)

where $⊥
= −ad(ex )$⊥ = 0 and $ ‖

= −D−1
x [u,$⊥

]‖ = 0 due to $⊥ = 0.

Proposition 5.7. The −1 flow equation (238) is equivalent to the nonlocal evolution equation

ut = ad(ex )h
(−1) (241)

with

Dx h(−1)
= −[u, h(−1)

], (242)

whose geometrical content expresses the vanishing of the connection (240) in the flow direction γt .

This flow (241) and (242) possesses the conservation law

0 = Dx |h
(−1)

|
2, |h(−1)

|
2

:= −〈h(−1)
⊥

, h(−1)
⊥

〉 − 〈h(−1)
‖

, h(−1)
‖

〉 = |γt |
2
g, (243)

geometrically corresponding to

0 = ∇x |γt |
2
g, (244)

admitted by the wave map equation (237). Consequently, a conformal scaling of t can be used to put

1 = |h(−1)
| = |γt |g (245)

whence the −1 flow is equivalent to a flow with unit speed.
In the examples M = SO(N + 1)/SO(N ), SU (N )/SO(N ) and M = SO(N + 1), SU (N ), the conformally

scaled −1 flow given by equations (241)–(245) was shown [3,4] to admit an algebraic reduction yielding a hyperbolic
equation of local non-polynomial form vt x = f (v, vt ) on the flow variable v = ad(ex )

−1u. Here a related hyperbolic
equation will be derived that directly generalizes the SG soliton equation from the scalar case M = S2 to M = G/H ,
without any reductions being introduced.
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To proceed, observe that Eq. (242) has the geometric formulation

Dx h(−1)
= 0 (246)

where

Dx = Dx + [u, ·] (247)

is a covariant derivative operator (cf. Proposition 4.4) associated with the x-connection in the flow. Now consider a
local gauge transformation on the x-connection, given by a smooth function q : γ ⊂ M = G/H → H∗

' Ad(H),
such that the operator (247) is flattened,Dx → qDx q−1

= Dx . This has the geometrical meaning that the transformed
x-connection vanishes

u → quq−1
− qx q−1

:= ũ = 0 (248)

giving a linear differential equation qx = qu that determines q in terms of u. For any such q, it then follows that the
transformed flow vector is constant

h(−1)
→ qh(−1)q−1

:= h̃, Dx h̃ = 0 (249)

where h̃ is some constant m -valued vector with unit norm due to property (245).
As a consequence, equation (246) is solved by

u = q−1qx , h(−1)
= q−1h̃q (250)

in terms of a H∗-valued potential q . Substitution of these expressions into the −1 flow equation (241) now leads to a
main result.

Theorem 5.8. The −1 flow on v = ad(ex )
−1u = ad(ex )

−1(q−1qx ) is given by a hyperbolic equation

qt x − qt q
−1qx = q[ex , q−1h̃q] = [qex q−1, h̃]q (251)

for the H∗-valued potential q, with Dx h̃ = 0 and |h̃|m = 1.

This flow depends on the pair of constant unit vectors ex , h̃ in m . Without loss of generality, under a rigid (x-
independent) transformation h̃ → q̃ h̃q̃−1 if necessary (which preserves (250)), the vector h̃ can be taken to belong to
the same Weyl chamber a∗(m ) that contains the vector ex in a fixed maximal abelian subspace a ⊂ m , whereby the
flow (251) is parametrized by unit-norm elements in the Weyl chamber a∗(m ) in m (cf. Proposition 3.2). Note the
invariance group of the flow will be H∗

‖
iff h̃ = ex .

A natural Hamiltonian structure can be derived for the hyperbolic flow equation (251) starting from the scaling
formula (199) extended to n = −1. Let

H (−1)
:= 〈ex , h(−1)

‖
〉 = 〈ex , h(−1)

〉 = 〈ex , q−1h̃q〉. (252)

Its variational derivative with respect to q is defined by δH (−1)
= tr(δq(δH (−1)/δq)) = −〈q−1δq, (δH (−1)/δq)q〉,

which yields

−(δH (−1)/δq)q = [ex , q−1h̃q] = ad(ex )h
(−1). (253)

Theorem 5.9. The hyperbolic flow equation (251) has the Hamiltonian structure

q−1(qt x − qt q
−1qx )q

−1
= −δH (−1)/δq (254)

or equivalently

qt q
−1

= −D−1
x (q(δH (−1)/δq)) (255)

as an evolutionary flow, where D−1
x is a Hamiltonian operator on the x-jet space of h-valued functions.
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This Hamiltonian structure has an equivalent formulation in terms of the flow variable v = ad(ex )
−1u by means of

the variational relations

δH (−1)
= −〈δu, δH (−1)/δu〉 = −〈δv, δH (−1)/δv〉, (256)

δu = ad(ex )δv = δ(q−1qx ) = Dx (q
−1δq), (257)

combined with the variational derivative (253), where δH (−1)/δu and δH (−1)/δv are h⊥- and m ⊥-valued respectively.
Note, since (δu)‖ = 0, the relation (257) implies (q−1δq)‖ = −D−1

x [u, (q−1δq)⊥]‖ and hence

δu = Dx (q
−1δq)⊥ + [u, (q−1δq)⊥ − D−1

x [u, (q−1δq)⊥]‖]⊥ = K(q−1δq)⊥ (258)

where K is the operator (74).

Proposition 5.10. The −1 flow equation (241) and (242) has the Hamiltonian structure

ut = H(δH (−1)/δu) (259)

where H (−1)
= 〈ex , q−1h̃q〉 is a nonlocal function of u determined by qx = qu. Equivalently, the −1 flow equation

(238) on v = ad(ex )
−1u is given by

vt = H̃(δH (−1)/δv) (260)

with q expressed in terms of v through qx = q[ex , v].

As a consequence, the −1 flow on v thus defines a nonlocal Hamiltonian vector field

h(−1)
⊥

:= (q−1h̃q)⊥ = H̃(δH (−1)/δv) (261)

and likewise

h⊥

(−1) := ad(ex )h
(−1)
⊥

= [ex , q−1h̃q] = H(δH (−1)/δu) (262)

is a corresponding nonlocal Hamiltonian vector field given by the −1 flow on u.

Remarks. The group-valued hyperbolic equation (254) provides a multicomponent generalization of the scalar SG
equation along with its Hamiltonian structure, arising from curve flows (237) in M = G/H . In particular, for
M = S2 if H∗

= SO(2) ' U (1) is viewed as the group of abelian unitary matrices then q = exp(iθ) can be
identified as a U (1)-valued potential satisfying the SG equation θt x = sin(θ − θ̃ ) with the Hamiltonian H (−1)

=

i=(exp(iθ) exp(−iθ̃ )), θ̃ =constant. From Theorems 5.8 and 5.9 and Proposition 5.10, the generalization of this
soliton equation in the multicomponent (nonabelian) case describes an integrable SG system for which the associated
−1 flow in nonlocal evolutionary form (255) possesses a hierarchy of higher order commuting symmetries given by the
vector fields (194) and higher order conserved densities given by the Hamiltonians (199) for n ≥ 0. Moreover, these
hierarchies can be expressed directly in terms of the potential q via the relation v = ad(ex )

−1u = ad(ex )
−1(q−1qx ).

6. Concluding remarks

The main results in this paper on bi-Hamiltonian hierarchies of geometric curve flows can be directly extended
to flat Riemannian symmetric spaces m = g/h ' Rn viewed as infinitesimal Klein geometries. One significant
geometrical difference will be that both the curvature and torsion of the Riemannian connection ∇ will vanish in the
Cartan structure equations for the framing of the curve flows γ (t, x) in Rn . This change does not affect the encoding
of bi-Hamiltonian operators, which will be the same Hamiltonian cosymplectic and symplectic operators as derived
in curved symmetric spaces M = G/H , but it does lead to a simpler recursion structure for the resulting integrable
hierarchy of group-invariant flow equations induced on the moving frame components of the principal normal vector
along the curves. In particular, the higher order mKdV flows in each hierarchy for M = G/H (when ∇ has non-zero
curvature) are linear combinations of the ones arising in m = g/h (when ∇ is flat).

A further extension of the main results in the present paper arises for Riemannian symmetric spaces M = G/H '

K given by any compact semisimple Lie group K , where G = K × K is a product group and H ' K is a diagonal
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subgroup. Since M here is a group manifold, there turns out to be an algebraic Hamiltonian operator that is compatible
with the cosymplectic and symplectic operators encoded in the Cartan structure equations for the framing of curve
flows γ (t, x). This leads to an enlarged bi-Hamiltonian hierarchy of geometric curve flows, containing group-invariant
NLS flows in addition to mKdV flows. The same result extends to the flat spaces m = g/h ' k for any compact
semisimple Lie algebra k (viewed as an infinitesimal Klein geometry). Details of this will presented in a forthcoming
paper.

Enlarged bi-Hamiltonian hierarchies of geometric curve flows will likewise arise for other symmetric spaces that
carry extra algebraic structure, such as hermitian spaces or quaternion spaces. All such spaces are well known from
Cartan’s classification [19].

Earlier work [3,4] studying the four symmetric spaces SO(N + 1)/SO(N ), SU (N )/SO(N ), SO(N + 1), SU (N )
geometrically accounted for all examples of O(N − 1)-invariant and U (N − 1)-invariant multicomponent mKdV and
SG equations that have been found in symmetry–integrability classifications of vector evolution equations [34] and
vector hyperbolic equations [6]. Building on these examples, a subsequent paper will be devoted to a full classification
of further examples of group-invariant soliton equations derived from geometric curve flows in all classical (non-
exceptional) symmetric spaces.

Finally, in light of work done in [10,11] deriving numerous scalar soliton equations from geometric curve flows
in planar Klein geometries G/H ' R2, a natural interesting question is whether the present analysis using moving
parallel frames for curve flows in Riemannian symmetric spaces can be broadly extended to general homogeneous
spaces M = G/H . Such a generalization would encompass non-Riemannian Klein geometries and, accordingly,
should yield group-invariant soliton equations (along with their bi-Hamiltonian structure) of other than mKdV and
SG type.
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